Search results
Results from the WOW.Com Content Network
In computational number theory, the Lucas test is a primality test for a natural number n; it requires that the prime factors of n − 1 be already known. [ 1 ] [ 2 ] It is the basis of the Pratt certificate that gives a concise verification that n is prime.
Certain number-theoretic methods exist for testing whether a number is prime, such as the Lucas test and Proth's test. These tests typically require factorization of n + 1, n − 1, or a similar quantity, which means that they are not useful for general-purpose primality testing, but they are often quite powerful when the tested number n is ...
In computer programming, a naming convention is a set of rules for choosing the character sequence to be used for identifiers which denote variables, types, functions, and other entities in source code and documentation.
A definite bound on the prime factors is possible. Suppose P i is the i 'th prime, so that P 1 = 2, P 2 = 3, P 3 = 5, etc. Then the last prime number worth testing as a possible factor of n is P i where P 2 i + 1 > n; equality here would mean that P i + 1 is a factor.
Proof: Lets assume that the algorithm tries to factor out a non prime number, say, 15. Because 15 is not prime, it will have factors less then 15, namely 3 and 5. Trying to factor out 15 is the same as trying to factor out 3 and 5 at once. However, because 3 and 5 are less then 15, the algorithm would have already factored them out.
The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P". [1]
Fermat's little theorem states that if p is prime and a is not divisible by p, then a p − 1 ≡ 1 ( mod p ) . {\displaystyle a^{p-1}\equiv 1{\pmod {p}}.} If one wants to test whether p is prime, then we can pick random integers a not divisible by p and see whether the congruence holds.
The Mersenne number M 3 = 2 3 −1 = 7 is prime. The Lucas–Lehmer test verifies this as follows. Initially s is set to 4 and then is updated 3−2 = 1 time: s ← ((4 × 4) − 2) mod 7 = 0. Since the final value of s is 0, the conclusion is that M 3 is prime. On the other hand, M 11 = 2047 = 23 × 89 is not prime