Search results
Results from the WOW.Com Content Network
In statistics, data can have any of various types. Statistical data types include categorical (e.g. country ), directional ( angles or directions , e.g. wind measurements), count (a whole number of events), or real intervals (e.g. measures of temperature ).
Data may be collected, presented and summarised, in one of two methods called descriptive statistics. Two elementary summaries of data, singularly called a statistic, are the mean and dispersion. Whereas inferential statistics interprets data from a population sample to induce statements and predictions about a population. [6] [7] [5]
Non-parametric tests have the advantage of being more resistant to misbehaviour of the data, such as outliers. [7] They also have the disadvantage of being less certain in the statistical estimate. [7] Type of data: Statistical tests use different types of data. [1] Some tests perform univariate analysis on a single sample with a single variable.
The zeta distribution has uses in applied statistics and statistical mechanics, and perhaps may be of interest to number theorists. It is the Zipf distribution for an infinite number of elements. The Hardy distribution, which describes the probabilities of the hole scores for a given golf player.
In mathematics and statistics, a quantitative variable may be continuous or discrete if it is typically obtained by measuring or counting, respectively. [1] If it can take on two particular real values such that it can also take on all real values between them (including values that are arbitrarily or infinitesimally close together), the variable is continuous in that interval. [2]
In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguished. [1] For example, the sample mean is a commonly used estimator of the population mean. There are point and interval ...
Early work on statistical classification was undertaken by Fisher, [1] [2] in the context of two-group problems, leading to Fisher's linear discriminant function as the rule for assigning a group to a new observation. [3] This early work assumed that data-values within each of the two groups had a multivariate normal distribution.
Ordinal data is a categorical, statistical data type where the variables have natural, ordered categories and the distances between the categories are not known. [1]: 2 These data exist on an ordinal scale, one of four levels of measurement described by S. S. Stevens in 1946.