enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Propositional calculus - Wikipedia

    en.wikipedia.org/wiki/Propositional_calculus

    The most thoroughly researched branch of propositional logic is classical truth-functional propositional logic, [1] in which formulas are interpreted as having precisely one of two possible truth values, the truth value of true or the truth value of false. [19]

  3. List of logic symbols - Wikipedia

    en.wikipedia.org/wiki/List_of_logic_symbols

    material conditional (material implication) implies, if P then Q, it is not the case that P and not Q propositional logic, Boolean algebra, Heyting algebra: is false when A is true and B is false but true otherwise.

  4. Necessity and sufficiency - Wikipedia

    en.wikipedia.org/wiki/Necessity_and_sufficiency

    The assertion that Q is necessary for P is colloquially equivalent to "P cannot be true unless Q is true" or "if Q is false, then P is false". [9] [1] By contraposition, this is the same thing as "whenever P is true, so is Q". The logical relation between P and Q is expressed as "if P, then Q" and denoted "P ⇒ Q" (P implies Q).

  5. Truth table - Wikipedia

    en.wikipedia.org/wiki/Truth_table

    Thus, the function f itself can be listed as: f = {((0, 0), f 0), ((0, 1), f 1), ((1, 0), f 2), ((1, 1), f 3)}, where f 0, f 1, f 2, and f 3 are each Boolean, 0 or 1, values as members of the codomain {0, 1}, as the outputs corresponding to the member of the domain, respectively. Rather than a list (set) given above, the truth table then ...

  6. Propositional formula - Wikipedia

    en.wikipedia.org/wiki/Propositional_formula

    In the abstract (ideal) case the simplest oscillating formula is a NOT fed back to itself: ~(~(p=q)) = q. Analysis of an abstract (ideal) propositional formula in a truth-table reveals an inconsistency for both p=1 and p=0 cases: When p=1, q=0, this cannot be because p=q; ditto for when p=0 and q=1.

  7. Implicational propositional calculus - Wikipedia

    en.wikipedia.org/wiki/Implicational...

    However, if one adds a nullary connective ⊥ for falsity, then one can define all other truth functions. Formulas over the resulting set of connectives {→, ⊥} are called f-implicational. [1] If P and Q are propositions, then: ¬P is equivalent to P → ⊥; P ∧ Q is equivalent to (P → (Q → ⊥)) → ⊥; P ∨ Q is equivalent to (P ...

  8. NYT ‘Connections’ Hints and Answers Today, Sunday, January 19

    www.aol.com/nyt-connections-hints-answers-today...

    We mean it. Read no further until you really want some clues or you've completely given up and want the answers ASAP. Get ready for all of today's NYT 'Connections’ hints and answers for #588 on ...

  9. Four-valued logic - Wikipedia

    en.wikipedia.org/wiki/Four-valued_logic

    The four values are 1, 0, Z and X. 1 and 0 stand for Boolean true and false, Z stands for high impedance or open circuit and X stands for don't care (e.g., the value has no effect). This logic is itself a subset of the 9-valued logic standard called IEEE 1164 and implemented in Very High Speed Integrated Circuit Hardware Description Language ...