Search results
Results from the WOW.Com Content Network
The most thoroughly researched branch of propositional logic is classical truth-functional propositional logic, [1] in which formulas are interpreted as having precisely one of two possible truth values, the truth value of true or the truth value of false. [19]
The assertion that Q is necessary for P is colloquially equivalent to "P cannot be true unless Q is true" or "if Q is false, then P is false". [9] [1] By contraposition, this is the same thing as "whenever P is true, so is Q". The logical relation between P and Q is expressed as "if P, then Q" and denoted "P ⇒ Q" (P implies Q).
A Boolean-valued function (sometimes called a predicate or a proposition) is a function of the type f : X → B, where X is an arbitrary set and where B is a Boolean domain, i.e. a generic two-element set, (for example B = {0, 1}), whose elements are interpreted as logical values, for example, 0 = false and 1 = true, i.e., a single bit of information.
The function f is continuous at p if and only if the limit of f(x) as x approaches p exists and is equal to f(p). If f : M → N is a function between metric spaces M and N, then it is equivalent that f transforms every sequence in M which converges towards p into a sequence in N which converges towards f(p).
Thus, the function f itself can be listed as: f = {((0, 0), f 0), ((0, 1), f 1), ((1, 0), f 2), ((1, 1), f 3)}, where f 0, f 1, f 2, and f 3 are each Boolean, 0 or 1, values as members of the codomain {0, 1}, as the outputs corresponding to the member of the domain, respectively. Rather than a list (set) given above, the truth table then ...
In the abstract (ideal) case the simplest oscillating formula is a NOT fed back to itself: ~(~(p=q)) = q. Analysis of an abstract (ideal) propositional formula in a truth-table reveals an inconsistency for both p=1 and p=0 cases: When p=1, q=0, this cannot be because p=q; ditto for when p=0 and q=1.
material conditional (material implication) implies, if P then Q, it is not the case that P and not Q propositional logic, Boolean algebra, Heyting algebra: is false when A is true and B is false but true otherwise.
In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually {true, false}, {0,1} or {-1,1}). [ 1 ] [ 2 ] Alternative names are switching function , used especially in older computer science literature, [ 3 ] [ 4 ] and truth function (or logical function) , used in logic .