Search results
Results from the WOW.Com Content Network
In geometry, a straight line, usually abbreviated line, is an infinitely long object with no width, depth, or curvature, an idealization of such physical objects as a straightedge, a taut string, or a ray of light. Lines are spaces of dimension one, which may be embedded in spaces of dimension two, three, or
The family of lines formed by the sides of a regular polygon together with its axes of symmetry, and; The sides and axes of symmetry of an even regular polygon, together with the line at infinity. Additionally there are many other examples of sporadic simplicial arrangements that do not fit into any known infinite family. [22]
This page will attempt to list examples in mathematics. To qualify for inclusion, an article should be about a mathematical object with a fair amount of concreteness. Usually a definition of an abstract concept, a theorem, or a proof would not be an "example" as the term should be understood here (an elegant proof of an isolated but particularly striking fact, as opposed to a proof of a ...
Mathematical constructivism asserts that it is necessary to find (or "construct") a specific example of a mathematical object in order to prove that an example exists. Contrastingly, in classical mathematics, one can prove the existence of a mathematical object without "finding" that object explicitly, by assuming its non-existence and then ...
For example: "All humans are mortal, and Socrates is a human. ∴ Socrates is mortal." ∵ Abbreviation of "because" or "since". Placed between two assertions, it means that the first one is implied by the second one. For example: "11 is prime ∵ it has no positive integer factors other than itself and one." ∋ 1. Abbreviation of "such that".
For example, in Book I of Euclid's Elements, a line is defined as a "breadthless length" (Def. 2), while a straight line is defined as "a line that lies evenly with the points on itself" (Def. 4). Euclid's idea of a line is perhaps clarified by the statement "The extremities of a line are points," (Def. 3). [ 3 ]
A closed line segment includes both endpoints, while an open line segment excludes both endpoints; a half-open line segment includes exactly one of the endpoints. In geometry , a line segment is often denoted using an overline ( vinculum ) above the symbols for the two endpoints, such as in AB .
German mathematician Carl Friedrich Gauss said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics." Number theory also studies the natural, or whole, numbers. One of the central concepts in number theory is that of the prime number , and there are many questions about primes that appear simple but whose ...