Search results
Results from the WOW.Com Content Network
The mammalian target of rapamycin (mTOR), [5] also referred to as the mechanistic target of rapamycin, and sometimes called FK506-binding protein 12-rapamycin-associated protein 1 (FRAP1), is a kinase that in humans is encoded by the MTOR gene. [6] [7] [8] mTOR is a member of the phosphatidylinositol 3-kinase-related kinase family of protein ...
Rapamycin was the first known inhibitor of mTORC1, considering that mTORC1 was discovered as being the target of rapamycin. [83] Rapamycin will bind to cytosolic FKBP12 and act as a scaffold molecule, allowing this protein to dock on the FRB regulatory region (FKBP12-Rapamycin Binding region/domain) on mTORC1. [ 84 ]
mTOR inhibitors are a class of drugs used to treat several human diseases, including cancer, autoimmune diseases, and neurodegeneration. They function by inhibiting the mammalian target of rapamycin (mTOR) (also known as the mechanistic target of rapamycin), which is a serine/threonine-specific protein kinase that belongs to the family of phosphatidylinositol-3 kinase (PI3K) related kinases ...
Torin_1 is a drug which was one of the first non-rapalog derived inhibitors of the mechanistic target of rapamycin (mTOR) subtypes mTORC1 and mTORC2. [1] [2] ...
This is done by direct communication between the TPCs and mammalian/mechanistic targets of rapamycin (mTORs), which are associated with detecting levels of oxygen, nutrients, and energy in the cells and thus help with regulation of metabolism.
It is a mammalian target of rapamycin (mTOR) kinase inhibitor [3] that reduces the sensitivity of T cells and B cells to interleukin-2 (IL-2), inhibiting their activity. [12] This compound also has a use in cardiovascular drug-eluting stent technologies to inhibit restenosis.
HY-124798 (Rheb inhibitor NR1) is the first compound to be developed that acts as a potent and selective inhibitor of Rheb, a GTP-binding protein which acts as an endogenous activator of the mechanistic target of rapamycin (mTOR) subtype mTORC1.
A patient-derived xenograft TNBC model testing the mTOR inhibitor rapamycin showed 77–99% tumor-growth inhibition, which is significantly more than has been seen with doxorubicin; protein phosphorylation studies indicated that constitutive activation of the mTOR pathway decreased with treatment.