Search results
Results from the WOW.Com Content Network
13 C NMR Spectrum of DMSO-d 6. Pure deuterated DMSO shows no peaks in 1 H NMR spectroscopy and as a result is commonly used as an NMR solvent. [2] However commercially available samples are not 100% pure and a residual DMSO-d 5 1 H NMR signal is observed at 2.50ppm (quintet, J HD =1.9Hz). The 13 C chemical shift of DMSO-d 6 is 39.52ppm (septet ...
This page provides supplementary chemical data on dimethyl sulfoxide. ... % by mole DMSO liquid vapor 55.80: 48.75: 1.0 64.50: 59.75 ... Other NMR data MS; Masses of ...
Samples were prepared by dissolution in CDCl 3, D 2 O, or DMSO-d 6. [5] Each spectrum is accompanied by a list of the observed peaks with their respective chemical shifts in ppm and their intensities. Most spectra show the peak assignment. This collection contains ca 14,200 spectra and is being updated. [4]
Deuterated solvents are a group of compounds where one or more hydrogen atoms are substituted by deuterium atoms. These isotopologues of common solvents are often used in nuclear magnetic resonance spectroscopy .
Dimethyl sulfoxide (DMSO) is an organosulfur compound with the formula (CH 3) 2 S O.This colorless liquid is the sulfoxide most widely used commercially. It is an important polar aprotic solvent that dissolves both polar and nonpolar compounds and is miscible in a wide range of organic solvents as well as water.
The two dimensions of a two-dimensional NMR experiment are two frequency axes representing a chemical shift. Each frequency axis is associated with one of the two time variables, which are the length of the evolution period (the evolution time) and the time elapsed during the detection period (the detection time).
cis-RuCl 2 (dmso) 4, a representative metal complex of a sulfoxide. Three DMSO ligands are S-bonded to Ru, one is O-bonded. Sulfoxides, especially DMSO, form coordination complexes with transition metals. Depending on the hard-soft properties of the metal, the sulfoxide binds through either the sulfur or the oxygen atom. The latter is ...
Nuclear magnetic resonance (NMR) spectroscopy uses the intrinsic magnetic moment that arises from the spin angular momentum of a spin-active nucleus. [1] If the element of interest has a nuclear spin that is not zero, [1] the nucleus may exist in different spin angular momentum states, where the energy of these states can be affected by an external magnetic field.