Search results
Results from the WOW.Com Content Network
Hence the rate of Hamming codes is R = k / n = 1 − r / (2 r − 1), which is the highest possible for codes with minimum distance of three (i.e., the minimal number of bit changes needed to go from any code word to any other code word is three) and block length 2 r − 1.
In coding theory, Hamming(7,4) is a linear error-correcting code that encodes four bits of data into seven bits by adding three parity bits. It is a member of a larger family of Hamming codes, but the term Hamming code often refers to this specific code that Richard W. Hamming introduced in 1950.
For a fixed length n, the Hamming distance is a metric on the set of the words of length n (also known as a Hamming space), as it fulfills the conditions of non-negativity, symmetry, the Hamming distance of two words is 0 if and only if the two words are identical, and it satisfies the triangle inequality as well: [2] Indeed, if we fix three words a, b and c, then whenever there is a ...
In the extended binary Golay code, all code words have Hamming weights of 0, 8, 12, 16, or 24. Code words of weight 8 are called octads and code words of weight 12 are called dodecads. Octads of the code G 24 are elements of the S(5,8,24) Steiner system. There are 759 = 3 × 11 × 23 octads and 759 complements thereof.
A typical example of linear code is the Hamming code. Codes defined via a Hamming space necessarily have the same length for every codeword, so they are called block codes when it is necessary to distinguish them from variable-length codes that are defined by unique factorization on a monoid.
The theory of lexicographic codes is closely connected to combinatorial game theory. In particular, the codewords in a binary lexicographic code of distance d encode the winning positions in a variant of Grundy's game , played on a collection of heaps of stones, in which each move consists of replacing any one heap by at most d − 1 smaller ...
A perfect code may be interpreted as one in which the balls of Hamming radius t centered on codewords exactly fill out the space (t is the covering radius = packing radius). A quasi-perfect code is one in which the balls of Hamming radius t centered on codewords are disjoint and the balls of radius t +1 cover the space, possibly with some ...
This page was last edited on 19 October 2019, at 20:16 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.