enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multilevel model - Wikipedia

    en.wikipedia.org/wiki/Multilevel_model

    Multilevel models (also known as hierarchical linear models, linear mixed-effect models, mixed models, nested data models, random coefficient, random-effects models, random parameter models, or split-plot designs) are statistical models of parameters that vary at more than one level. [1]

  3. Marginal model - Wikipedia

    en.wikipedia.org/wiki/Marginal_model

    In statistics, marginal models (Heagerty & Zeger, 2000) are a technique for obtaining regression estimates in multilevel modeling, also called hierarchical linear models. People often want to know the effect of a predictor/explanatory variable X, on a response variable Y. One way to get an estimate for such effects is through regression analysis.

  4. Bayesian hierarchical modeling - Wikipedia

    en.wikipedia.org/wiki/Bayesian_hierarchical_modeling

    Bayesian hierarchical modelling is a statistical model written in multiple levels (hierarchical form) that estimates the parameters of the posterior distribution using the Bayesian method. [1] The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the ...

  5. Random effects model - Wikipedia

    en.wikipedia.org/wiki/Random_effects_model

    In econometrics, a random effects model, also called a variance components model, is a statistical model where the model parameters are random variables.It is a kind of hierarchical linear model, which assumes that the data being analysed are drawn from a hierarchy of different populations whose differences relate to that hierarchy.

  6. Hierarchical generalized linear model - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_generalized...

    Hierarchical generalized linear models are used when observations come from different clusters. There are two types of estimators: fixed effect estimators and random effect estimators, corresponding to parameters in : = and in (), respectively. There are different ways to obtain parameter estimates for a hierarchical generalized linear model.

  7. Principle of marginality - Wikipedia

    en.wikipedia.org/wiki/Principle_of_marginality

    In statistics, the principle of marginality, sometimes called hierarchical principle, is the fact that the average (or main) effects of variables in an analysis are marginal to their interaction effect—that is, the main effect of one explanatory variable captures the effect of that variable averaged over all values of a second explanatory variable whose value influences the first variable's ...

  8. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    First, regression analysis is widely used for prediction and forecasting, where its use has substantial overlap with the field of machine learning. Second, in some situations regression analysis can be used to infer causal relationships between the independent and dependent variables. Importantly, regressions by themselves only reveal ...

  9. Multilevel modeling for repeated measures - Wikipedia

    en.wikipedia.org/wiki/Multilevel_Modeling_for...

    One application of multilevel modeling (MLM) is the analysis of repeated measures data. Multilevel modeling for repeated measures data is most often discussed in the context of modeling change over time (i.e. growth curve modeling for longitudinal designs); however, it may also be used for repeated measures data in which time is not a factor.