enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multilevel modeling for repeated measures - Wikipedia

    en.wikipedia.org/wiki/Multilevel_Modeling_for...

    MLM Allows Hierarchical Structure: MLM can be used for higher-order sampling procedures, whereas RM-ANOVA is limited to examining two-level sampling procedures. In other words, MLM can look at repeated measures within subjects, within a third level of analysis etc., whereas RM-ANOVA is limited to repeated measures within subjects.

  3. Multilevel model - Wikipedia

    en.wikipedia.org/wiki/Multilevel_model

    Multilevel models (also known as hierarchical linear models, linear mixed-effect models, mixed models, nested data models, random coefficient, random-effects models, random parameter models, or split-plot designs) are statistical models of parameters that vary at more than one level. [1]

  4. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    First, regression analysis is widely used for prediction and forecasting, where its use has substantial overlap with the field of machine learning. Second, in some situations regression analysis can be used to show causal relationships between the independent and dependent variables. Importantly, regressions by themselves only reveal ...

  5. Hierarchical generalized linear model - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_generalized...

    Hierarchical generalized linear models are used when observations come from different clusters. There are two types of estimators: fixed effect estimators and random effect estimators, corresponding to parameters in : = and in (), respectively. There are different ways to obtain parameter estimates for a hierarchical generalized linear model.

  6. Bayesian hierarchical modeling - Wikipedia

    en.wikipedia.org/wiki/Bayesian_hierarchical_modeling

    Bayesian hierarchical modelling is a statistical model written in multiple levels (hierarchical form) that estimates the parameters of the posterior distribution using the Bayesian method. [1] The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the ...

  7. Random effects model - Wikipedia

    en.wikipedia.org/wiki/Random_effects_model

    In econometrics, a random effects model, also called a variance components model, is a statistical model where the model parameters are random variables.It is a kind of hierarchical linear model, which assumes that the data being analysed are drawn from a hierarchy of different populations whose differences relate to that hierarchy.

  8. Multivariate statistics - Wikipedia

    en.wikipedia.org/wiki/Multivariate_statistics

    Multivariate analysis can be complicated by the desire to include physics-based analysis to calculate the effects of variables for a hierarchical "system-of-systems". Often, studies that wish to use multivariate analysis are stalled by the dimensionality of the problem.

  9. Ward's method - Wikipedia

    en.wikipedia.org/wiki/Ward's_method

    In statistics, Ward's method is a criterion applied in hierarchical cluster analysis. Ward's minimum variance method is a special case of the objective function approach originally presented by Joe H. Ward, Jr. [ 1 ] Ward suggested a general agglomerative hierarchical clustering procedure, where the criterion for choosing the pair of clusters ...