Search results
Results from the WOW.Com Content Network
If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium moves to partially reverse the change. For example, adding more S (to the chemical reaction above) from the outside will cause an excess of products, and the system will try to counteract this by increasing the reverse reaction and pushing the ...
When a reaction is at equilibrium, Q r = K eq and =. Otherwise, the Van 't Hoff isotherm predicts the direction that the system must shift in order to achieve equilibrium; when Δ r G < 0 , the reaction moves in the forward direction, whereas when Δ r G > 0 , the reaction moves in the backwards direction.
At equilibrium, the chemical force driving the forward reaction must be equal to the chemical force driving the reverse reaction. Writing the initial active masses of A,B, A' and B' as p, q, p' and q' and the dissociated active mass at equilibrium as ξ {\displaystyle \xi } , this equality is represented by
The reversible reaction N 2 O 4 (g) ⇌ 2NO 2 (g) is endothermic, so the equilibrium position can be shifted by changing the temperature. When heat is added and the temperature increases, the reaction shifts to the right and the flask turns reddish brown due to an increase in NO 2. This demonstrates Le Chatelier's principle: the equilibrium ...
Free energy relationships establish the extent at which bond formation and breakage happen in the transition state of a reaction, and in combination with kinetic isotope experiments a reaction mechanism can be determined. Free energy relationships are often used to calculate equilibrium constants since they are experimentally difficult to ...
A reaction is in equilibrium when the rate of forward reaction is equal to the rate of reverse reaction. Such a reaction is said to be reversible. If the starting material and product(s) are in equilibrium then their relative abundance is decided by the difference in free energy between them.
Equilibrant force example. Suppose that two known forces, which are going to represented as vectors, A and B are pushing an object and an unknown equilibrant force, C, is acting to maintain that object in a fixed position. Force A points to the west and has a magnitude of 10 N and is represented by the vector
The equilibrium constant for a full redox reaction can be obtained from the standard redox potentials of the constituent half-reactions. At equilibrium the potential for the two half-reactions must be equal to each other and, of course, the number of electrons exchanged must be the same in the two half reactions. [32]