enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Imaginary number - Wikipedia

    en.wikipedia.org/wiki/Imaginary_number

    An imaginary number is the product of a real number and the imaginary unit i, [note 1] which is defined by its property i 2 = −1. [1] [2] The square of an imaginary number bi is −b 2. For example, 5i is an imaginary number, and its square is −25. The number zero is considered to be both real and imaginary. [3]

  3. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    A real number a can be regarded as a complex number a + 0i, whose imaginary part is 0. A purely imaginary number bi is a complex number 0 + bi, whose real part is zero. As with polynomials, it is common to write a + 0i = a, 0 + bi = bi, and a + (−b)i = a − bi; for example, 3 + (−4)i = 3 − 4i.

  4. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    All rational numbers are real, but the converse is not true. Irrational numbers (): Real numbers that are not rational. Imaginary numbers: Numbers that equal the product of a real number and the imaginary unit , where =. The number 0 is both real and imaginary.

  5. Imaginary unit - Wikipedia

    en.wikipedia.org/wiki/Imaginary_unit

    The imaginary unit i in the complex plane: Real numbers are conventionally drawn on the horizontal axis, and imaginary numbers on the vertical axis.. The imaginary unit or unit imaginary number (i) is a mathematical constant that is a solution to the quadratic equation x 2 + 1 = 0.

  6. Imaginary time - Wikipedia

    en.wikipedia.org/wiki/Imaginary_time

    Chp 4 A number that is the sum of an imaginary number and a real number is known as a complex number. In certain physical theories, periods of time are multiplied by i {\displaystyle i} in this way. Mathematically, an imaginary time period τ {\textstyle \tau } may be obtained from real time t {\textstyle t} via a Wick rotation by π / 2 ...

  7. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    Any complex number = + can be represented by the point (,) on the complex plane. This point can also be represented in polar coordinates as ( r , θ ) {\displaystyle (r,\theta )} , where r is the absolute value of z (distance from the origin), and θ {\displaystyle \theta } is the argument of z (angle counterclockwise from the positive x -axis).

  8. Complex plane - Wikipedia

    en.wikipedia.org/wiki/Complex_plane

    In complex analysis, the complex numbers are customarily represented by the symbol z, which can be separated into its real (x) and imaginary (y) parts: z = x + i y {\displaystyle z=x+iy} for example: z = 4 + 5 i , where x and y are real numbers, and i is the imaginary unit .

  9. Actual infinity - Wikipedia

    en.wikipedia.org/wiki/Actual_infinity

    The question of whether natural or real numbers form definite sets is therefore independent of the question of whether infinite things exist physically in nature. Proponents of intuitionism, from Kronecker onwards, reject the claim that there are actually infinite mathematical objects or sets. Consequently, they reconstruct the foundations of ...