Search results
Results from the WOW.Com Content Network
In a relational database, a relation is a set of tuples that have the same attributes. A tuple usually represents an object and information about that object. Objects are typically physical objects or concepts. A relation is usually described as a table, which is organized into rows and columns.
Codd's theorem states that relational algebra and the domain-independent relational calculus queries, two well-known foundational query languages for the relational model, are precisely equivalent in expressive power. That is, a database query can be formulated in one language if and only if it can be expressed in the other.
In database theory, a relation, as originally defined by E. F. Codd, [1] is a set of tuples (d 1,d 2,...,d n), where each element d j is a member of D j, a data domain. Codd's original definition notwithstanding, and contrary to the usual definition in mathematics, there is no ordering to the elements of the tuples of a relation.
Codd's twelve rules [1] are a set of thirteen rules (numbered zero to twelve) proposed by Edgar F. Codd, a pioneer of the relational model for databases, designed to define what is required from a database management system in order for it to be considered relational, i.e., a relational database management system (RDBMS).
The relational model (RM) is an approach to managing data using a structure and language consistent with first-order predicate logic, first described in 1969 by English computer scientist Edgar F. Codd, [1] [2] where all data are represented in terms of tuples, grouped into relations.
A relational database schema is defined as a tuple S = (D, R, h) where D is the domain of atomic values (see relational model for more on the notions of domain and atomic value), R is a finite set of relation names, and h : R → 2 C. a function that associates a header with each relation name in R. (Note that this is a simplification from the ...
The relational algebra uses set union, set difference, and Cartesian product from set theory, and adds additional constraints to these operators to create new ones.. For set union and set difference, the two relations involved must be union-compatible—that is, the two relations must have the same set of attributes.
Given a set of functional dependencies , an Armstrong relation is a relation which satisfies all the functional dependencies in the closure + and only those dependencies. . Unfortunately, the minimum-size Armstrong relation for a given set of dependencies can have a size which is an exponential function of the number of attributes in the dependencies conside