Search results
Results from the WOW.Com Content Network
In chemistry and biology, a cross-link is a bond or a short sequence of bonds that links one polymer chain to another. These links may take the form of covalent bonds or ionic bonds and the polymers can be either synthetic polymers or natural polymers (such as proteins ).
For example, in the synthesis of PET, a small fraction of the ethylene glycol can be replaced by glycerol which has three alcohol groups. This trifunctional molecule inserts itself in the polymeric chain and bonds to three carboxylic acid groups forming a branch point. Finally, the formation of cross-linked polymers involves tetrafunctional ...
In polymer chemistry, branching is the regular or irregular attachment of side chains to a polymer's backbone chain. It occurs by the replacement of a substituent (e.g. a hydrogen atom ) on a monomer subunit by another covalently-bonded chain of that polymer; or, in the case of a graft copolymer , by a chain of another type.
Example of chain polymerization: Radical polymerization of styrene, R. is initiating radical, P. is another polymer chain radical terminating the formed chain by radical recombination. Newer methods, such as plasma polymerization do not fit neatly into either category. Synthetic polymerization reactions may be carried out with or without a ...
Curing is a chemical process employed in polymer chemistry and process engineering that produces the toughening or hardening of a polymer material by cross-linking of polymer chains. [1] Even if it is strongly associated with the production of thermosetting polymers , the term "curing" can be used for all the processes where a solid product is ...
Polyfullerene is a basic polymer of the C 60 monomer group, in which fullerene segments are connected via covalent bonds into a polymeric chain without side or bridging groups. They are called intrinsic polymeric fullerenes, or more often all C 60 polymers. Fullerene can be part of a polymer chain in many different ways.
The use of non-covalent interactions such as hydrogen bonding, pi-stacking or crystallization that lead to physical cross-links between polymer chains is one way of introducing dynamic cross-linking. The thermoreversible nature of the physical cross-links results in polymer materials with improved mechanical properties without losing ...
Long chain branches may increase polymer strength, toughness, and the glass transition temperature (T g) due to an increase in the number of entanglements per chain. A random and short chain length between branches, on the other hand, may reduce polymer strength due to disruption of the chains' ability to interact with each other or crystallize.