enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regular icosahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_icosahedron

    The regular icosahedron can also be constructed starting from a regular octahedron. All triangular faces of a regular octahedron are breaking, twisting at a certain angle, and filling up with other equilateral triangles. This process is known as snub, and the regular icosahedron is also known as snub octahedron. [5]

  3. Icosahedron - Wikipedia

    en.wikipedia.org/wiki/Icosahedron

    The convex regular icosahedron is usually referred to simply as the regular icosahedron, one of the five regular Platonic solids, and is represented by its Schläfli symbol {3, 5}, containing 20 triangular faces, with 5 faces meeting around each vertex. Its dual polyhedron is the regular dodecahedron {5, 3} having three regular pentagonal faces ...

  4. List of Wenninger polyhedron models - Wikipedia

    en.wikipedia.org/wiki/List_of_Wenninger...

    The polyhedra are grouped in 5 tables: Regular (1–5), Semiregular (6–18), regular star polyhedra (20–22,41), Stellations and compounds (19–66), and uniform star polyhedra (67–119). The four regular star polyhedra are listed twice because they belong to both the uniform polyhedra and stellation groupings.

  5. Icosahedral symmetry - Wikipedia

    en.wikipedia.org/wiki/Icosahedral_symmetry

    Icosahedral symmetry fundamental domains A soccer ball, a common example of a spherical truncated icosahedron, has full icosahedral symmetry. Rotations and reflections form the symmetry group of a great icosahedron. In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron.

  6. Gyroelongated bipyramid - Wikipedia

    en.wikipedia.org/wiki/Gyroelongated_bipyramid

    Three members of the set can be deltahedra, that is, constructed entirely of equilateral triangles: the gyroelongated square bipyramid, a Johnson solid; the icosahedron, a Platonic solid; and the gyroelongated triangular bipyramid if it is made with equilateral triangles, but because it has coplanar faces is not strictly convex.

  7. Solids with icosahedral symmetry - Wikipedia

    en.wikipedia.org/wiki/Solids_with_icosahedral...

    (quasi-regular: vertex- and edge-uniform) 32: 20 triangles 12 pentagons: 60: 30 3,5,3,5 truncated dodecahedron : 32: 20 triangles 12 decagons: 90 60 3,10,10 truncated icosahedron or commonly football (soccer ball) 32: 12 pentagons 20 hexagons: 90 60 5,6,6 rhombicosidodecahedron or small rhombicosidodecahedron 62: 20 triangles 30 squares

  8. Edge-contracted icosahedron - Wikipedia

    en.wikipedia.org/wiki/Edge-contracted_icosahedron

    The dissected regular icosahedron is a variant topologically equivalent to the sphenocorona with the two sets of 3 coplanar faces as trapezoids. This is the vertex figure of a 4D polytope, grand antiprism. It has 10 vertices, 22 edges, and 12 equilateral triangular faces and 2 trapezoid faces. [2]

  9. Rhombic triacontahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_triacontahedron

    Let φ be the golden ratio.The 12 points given by (0, ±1, ±φ) and cyclic permutations of these coordinates are the vertices of a regular icosahedron.Its dual regular dodecahedron, whose edges intersect those of the icosahedron at right angles, has as vertices the 8 points (±1, ±1, ±1) together with the 12 points (0, ±φ, ± ⁠ 1 / φ ⁠) and cyclic permutations of these coordinates.