enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Comparability - Wikipedia

    en.wikipedia.org/wiki/Comparability

    A totally ordered set is a partially ordered set in which any two elements are comparable. The Szpilrajn extension theorem states that every partial order is contained in a total order. Intuitively, the theorem says that any method of comparing elements that leaves some pairs incomparable can be extended in such a way that every pair becomes ...

  3. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.

  4. Dilworth's theorem - Wikipedia

    en.wikipedia.org/wiki/Dilworth's_theorem

    In mathematics, in the areas of order theory and combinatorics, Dilworth's theorem states that, in any finite partially ordered set, the maximum size of an antichain of incomparable elements equals the minimum number of chains needed to cover all elements. This number is called the width of the partial order.

  5. Antichain - Wikipedia

    en.wikipedia.org/wiki/Antichain

    For the partially ordered system of all subsets of a finite set, ordered by set inclusion, the antichains are called Sperner families and their lattice is a free distributive lattice, with a Dedekind number of elements. More generally, counting the number of antichains of a finite partially ordered set is #P-complete.

  6. Maximal and minimal elements - Wikipedia

    en.wikipedia.org/wiki/Maximal_and_minimal_elements

    In a directed set, every pair of elements (particularly pairs of incomparable elements) has a common upper bound within the set. If a directed set has a maximal element, it is also its greatest element, [proof 7] and hence its only maximal element. For a directed set without maximal or greatest elements, see examples 1 and 2 above.

  7. Order theory - Wikipedia

    en.wikipedia.org/wiki/Order_theory

    In a partially ordered set there may be some elements that play a special role. The most basic example is given by the least element of a poset. For example, 1 is the least element of the positive integers and the empty set is the least set under the subset order. Formally, an element m is a least element if: m ≤ a, for all elements a of the ...

  8. Dedekind–MacNeille completion - Wikipedia

    en.wikipedia.org/wiki/Dedekind–MacNeille...

    A given partially ordered set may have several different completions. For instance, one completion of any partially ordered set S is the set of its downwardly closed subsets ordered by inclusion. S is embedded in this (complete) lattice by mapping each element x to the lower set of elements that are less than or equal to x.

  9. Greatest element and least element - Wikipedia

    en.wikipedia.org/wiki/Greatest_element_and_least...

    The least and greatest element of the whole partially ordered set play a special role and are also called bottom (⊥) and top (⊤), or zero (0) and unit (1), respectively. If both exist, the poset is called a bounded poset.