Search results
Results from the WOW.Com Content Network
The test of significance is designed to assess the strength of the evidence against the null hypothesis, or a statement of 'no effect' or 'no difference'. [2] It is often symbolized as H 0 . The statement that is being tested against the null hypothesis is the alternative hypothesis. [ 2 ]
An example of Neyman–Pearson hypothesis testing (or null hypothesis statistical significance testing) can be made by a change to the radioactive suitcase example. If the "suitcase" is actually a shielded container for the transportation of radioactive material, then a test might be used to select among three hypotheses: no radioactive source ...
In null-hypothesis significance testing, the p-value [note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2] [3] A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.
Statistical significance plays a pivotal role in statistical hypothesis testing. It is used to determine whether the null hypothesis should be rejected or retained. The null hypothesis is the hypothesis that no effect exists in the phenomenon being studied. [36]
This is why the hypothesis under test is often called the null hypothesis (most likely, coined by Fisher (1935, p. 19)), because it is this hypothesis that is to be either nullified or not nullified by the test. When the null hypothesis is nullified, it is possible to conclude that data support the "alternative hypothesis" (which is the ...
It is named after its inventor, Ronald Fisher, and is one of a class of exact tests, so called because the significance of the deviation from a null hypothesis (e.g., p-value) can be calculated exactly, rather than relying on an approximation that becomes exact in the limit as the sample size grows to infinity, as with many statistical tests.
How to perform a Z test when T is a statistic that is approximately normally distributed under the null hypothesis is as follows: First, estimate the expected value μ of T under the null hypothesis, and obtain an estimate s of the standard deviation of T. Second, determine the properties of T : one tailed or two tailed.
Lilliefors test is a normality test based on the Kolmogorov–Smirnov test.It is used to test the null hypothesis that data come from a normally distributed population, when the null hypothesis does not specify which normal distribution; i.e., it does not specify the expected value and variance of the distribution. [1]