Search results
Results from the WOW.Com Content Network
The stability of helium-4 is the reason that hydrogen is converted to helium-4, and not deuterium (hydrogen-2) or helium-3 or other heavier elements during fusion reactions in the Sun. It is also partly responsible for the alpha particle being by far the most common type of baryonic particle to be ejected from an atomic nucleus; in other words ...
This condensation occurs in liquid helium-4 at a far higher temperature (2.17 K) than it does in helium-3 (2.5 mK) because each atom of helium-4 is a boson particle, by virtue of its zero spin. Helium-3, however, is a fermion particle, which can form bosons only by pairing with itself at much lower temperatures, in a weaker process that is ...
Each atom of helium-4 is a boson particle, by virtue of its integer spin. A helium-3 atom is a fermion particle; it can form bosons only by pairing with another particle like itself, which occurs at much lower temperatures. The discovery of superfluidity in helium-3 was the basis for the award of the 1996 Nobel Prize in Physics. [1]
The term helion is a portmanteau of helium and ion, and in practice refers specifically to the nucleus of the helium-3 isotope, consisting of two protons and one neutron. The nucleus of the other (and far more common) stable isotope of helium, helium-4, consisting of two protons and two neutrons, is called an alpha particle or an alpha for short.
In the Sun, each helium-3 nucleus produced in these reactions exists for only about 400 years before it is converted into helium-4. [9] Once the helium-3 has been produced, there are four possible paths to generate 4 He. In p–p I, helium-4 is produced by fusing two helium-3 nuclei; the p–p II and p–p III branches fuse 3 He with pre ...
At temperatures below the lambda point, helium shows the unique property of superfluidity. The fraction of the liquid that forms the superfluid component is a macroscopic quantum fluid. The helium atom is a neutral particle, so q = 0. Furthermore, when considering helium-4, the relevant particle mass is m = m 4, so Eq. reduces to
Liquid helium is a physical state of helium at very low temperatures at standard atmospheric pressures.Liquid helium may show superfluidity.. At standard pressure, the chemical element helium exists in a liquid form only at the extremely low temperature of −269 °C (−452.20 °F; 4.15 K).
Nuclear fusion reaction of two helium-4 nuclei produces beryllium-8, which is highly unstable, and decays back into smaller nuclei with a half-life of 8.19 × 10 −17 s, unless within that time a third alpha particle fuses with the beryllium-8 nucleus [3] to produce an excited resonance state of carbon-12, [4] called the Hoyle state, which ...