Search results
Results from the WOW.Com Content Network
The fixed point iteration x n+1 = cos(x n) with initial value x 0 = −1 converges to the Dottie number. Zero is the only real fixed point of the sine function; in other words the only intersection of the sine function and the identity function is sin ( 0 ) = 0 {\displaystyle \sin(0)=0} .
In the table below, the label "Undefined" represents a ratio : If the codomain of the trigonometric functions is taken to be the real numbers these entries are undefined , whereas if the codomain is taken to be the projectively extended real numbers , these entries take the value ∞ {\displaystyle \infty } (see division by zero ).
Basis of trigonometry: if two right triangles have equal acute angles, they are similar, so their corresponding side lengths are proportional.. In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) [1] are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.
In arithmetic, and therefore algebra, division by zero is undefined. [7] Use of a division by zero in an arithmetical calculation or proof, can produce absurd or meaningless results. Assuming that division by zero exists, can produce inconsistent logical results, such as the following fallacious "proof" that one is equal to two [ 8 ] :
In trigonometry, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined.
A – adele ring or algebraic numbers. a.a.s. – asymptotically almost surely. AC – Axiom of Choice, [1] or set of absolutely continuous functions. a.c. – absolutely continuous.
Trigonometry (from Ancient Greek τρίγωνον (trígōnon) 'triangle' and μέτρον (métron) 'measure') [1] is a branch of mathematics concerned with relationships between angles and side lengths of triangles.
Identity 1: + = The following two results follow from this and the ratio identities. To obtain the first, divide both sides of + = by ; for the second, divide by .