Search results
Results from the WOW.Com Content Network
Notice that for the condition to be satisfied, it is not possible that for each n the random variables X and X n are independent (and thus convergence in probability is a condition on the joint cdf's, as opposed to convergence in distribution, which is a condition on the individual cdf's), unless X is deterministic like for the weak law of ...
The term law of total probability is sometimes taken to mean the law of alternatives, which is a special case of the law of total probability applying to discrete random variables. [ citation needed ] One author uses the terminology of the "Rule of Average Conditional Probabilities", [ 4 ] while another refers to it as the "continuous law of ...
This is a list of limits for common functions such as elementary functions. In this article, the terms a, b and c are constants with respect to x.
Two major results in probability theory describing such behaviour are the law of large numbers and the central limit theorem. As a mathematical foundation for statistics , probability theory is essential to many human activities that involve quantitative analysis of data. [ 1 ]
In probability theory, the law of rare events or Poisson limit theorem states that the Poisson distribution may be used as an approximation to the binomial distribution, under certain conditions. [1] The theorem was named after Siméon Denis Poisson (1781–1840). A generalization of this theorem is Le Cam's theorem
The occurrence of the Gaussian probability density 1 = e −x 2 in repeated experiments, in errors of measurements, which result in the combination of very many and very small elementary errors, in diffusion processes etc., can be explained, as is well-known, by the very same limit theorem, which plays a central role in the calculus of probability.
This theorem makes rigorous the intuitive notion of probability as the expected long-run relative frequency of an event's occurrence. It is a special case of any of several more general laws of large numbers in probability theory. Chebyshev's inequality. Let X be a random variable with finite expected value μ and finite non-zero variance σ 2.
In asymptotic analysis in general, one sequence () that converges to a limit is said to asymptotically converge to with a faster order of convergence than another sequence () that converges to in a shared metric space with distance metric | |, such as the real numbers or complex numbers with the ordinary absolute difference metrics, if