Search results
Results from the WOW.Com Content Network
Each entry in the table contains the frequency or count of the occurrences of values within a particular group or interval, and in this way, the table summarizes the distribution of values in the sample. This is an example of a univariate (=single variable) frequency table. The frequency of each response to a survey question is depicted.
A Nichols plot. The Nichols plot is a plot used in signal processing and control design, named after American engineer Nathaniel B. Nichols. [1] [2] [3] It plots the phase response versus the response magnitude of a transfer function for any given frequency, and as such is useful in characterizing a system's frequency response.
A typical choice of characteristic frequency is the sampling rate that is used to create the digital signal from a continuous one. The normalized quantity, f ′ = f f s , {\displaystyle f'={\tfrac {f}{f_{s}}},} has the unit cycle per sample regardless of whether the original signal is a function of time or distance.
The upper half of this diagram shows the frequency spectrum of a modern switching power supply which employs spread spectrum. The lower half is a waterfall plot showing the variation of the frequency spectrum over time during the power supply's heating up period. Spectrogram and 3 styles of waterfall plot of a whistled sequence of 3 notes vs time
The example above is the simplest kind of contingency table, a table in which each variable has only two levels; this is called a 2 × 2 contingency table. In principle, any number of rows and columns may be used. There may also be more than two variables, but higher order contingency tables are difficult to represent visually.
In statistical quality control, the individual/moving-range chart is a type of control chart used to monitor variables data from a business or industrial process for which it is impractical to use rational subgroups. [1] The chart is necessary in the following situations: [2]: 231
Signal-flow graph connecting the inputs x (left) to the outputs y that depend on them (right) for a "butterfly" step of a radix-2 Cooley–Tukey FFT. This diagram resembles a butterfly (as in the morpho butterfly shown for comparison), hence the name, although in some countries it is also called the hourglass diagram.
The frequency domain decomposition (FDD) is an output-only system identification technique popular in civil engineering, in particular in structural health monitoring.As an output-only algorithm, it is useful when the input data is unknown.