enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.

  3. Euclidean tilings by convex regular polygons - Wikipedia

    en.wikipedia.org/wiki/Euclidean_tilings_by...

    Therefore, the second problem is that this nomenclature is not unique for each tessellation. In order to solve those problems, GomJau-Hogg’s notation [ 3 ] is a slightly modified version of the research and notation presented in 2012, [ 2 ] about the generation and nomenclature of tessellations and double-layer grids.

  4. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    If a geometric shape can be used as a prototile to create a tessellation, the shape is said to tessellate or to tile the plane. The Conway criterion is a sufficient, but not necessary, set of rules for deciding whether a given shape tiles the plane periodically without reflections: some tiles fail the criterion, but still tile the plane. [19]

  5. Penrose tiling - Wikipedia

    en.wikipedia.org/wiki/Penrose_tiling

    Here, a tiling is a covering of the plane by non-overlapping polygons or other shapes, and a tiling is aperiodic if it does not contain arbitrarily large periodic regions or patches. However, despite their lack of translational symmetry , Penrose tilings may have both reflection symmetry and fivefold rotational symmetry .

  6. Pentagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Pentagonal_tiling

    In geometry, a pentagonal tiling is a tiling of the plane where each individual piece is in the shape of a pentagon. A regular pentagonal tiling on the Euclidean plane is impossible because the internal angle of a regular pentagon , 108°, is not a divisor of 360°, the angle measure of a whole turn .

  7. Lists of shapes - Wikipedia

    en.wikipedia.org/wiki/Lists_of_shapes

    Lists of shapes cover different types of geometric shape and related topics. They include mathematics topics and other lists of shapes, such as shapes used by drawing or teaching tools. They include mathematics topics and other lists of shapes, such as shapes used by drawing or teaching tools.

  8. List of regular polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_regular_polytopes

    The blend of two polygons P and Q, written P#Q, can be constructed as follows: take the cartesian product of their vertices V P × V Q. add edges (p 0 × q 0, p 1 × q 1) where (p 0, p 1) is an edge of P and (q 0, q 1) is an edge of Q. select an arbitrary connected component of the result.

  9. Honeycomb (geometry) - Wikipedia

    en.wikipedia.org/wiki/Honeycomb_(geometry)

    Cubic honeycomb. In geometry, a honeycomb is a space filling or close packing of polyhedral or higher-dimensional cells, so that there are no gaps.It is an example of the more general mathematical tiling or tessellation in any number of dimensions.