Search results
Results from the WOW.Com Content Network
Face recognition, classification 2011 [111] Zhao, G. et al. BU-3DFE neutral face, and 6 expressions: anger, happiness, sadness, surprise, disgust, fear (4 levels). 3D images extracted. None. 2500 Images, text Facial expression recognition, classification 2006 [112] Binghamton University: Face Recognition Grand Challenge Dataset
The Facial Recognition Technology (FERET) database is a dataset used for facial recognition system evaluation as part of the Face Recognition Technology (FERET) program.It was first established in 1993 under a collaborative effort between Harry Wechsler at George Mason University and Jonathon Phillips at the Army Research Laboratory in Adelphi, Maryland.
A facial expression database is a collection of images or video clips with facial expressions of a range of emotions. Well-annotated ( emotion -tagged) media content of facial behavior is essential for training, testing, and validation of algorithms for the development of expression recognition systems .
In object-class detection, the task is to find the locations and sizes of all objects in an image that belong to a given class. Examples include upper torsos, pedestrians, and cars. Face detection simply answers two question, 1. are there any human faces in the collected images or video? 2. where is the face located?
FACE Challenges – recognition of individuals from photographs posted on social media. [9] Face in Video Evaluation (FIVE) – ability of algorithms to identify or ignore persons from video sources, many times in which the person is not actively cooperating for the purposes of facial recognition, i.e. "in the wild". [10]
The CIFAR-10 dataset (Canadian Institute For Advanced Research) is a collection of images that are commonly used to train machine learning and computer vision algorithms. It is one of the most widely used datasets for machine learning research. [1] [2] The CIFAR-10 dataset contains 60,000 32x32 color images in 10 different classes. [3]
OPPORTUNITY Activity Recognition Dataset Human Activity Recognition from wearable, object, and ambient sensors is a dataset devised to benchmark human activity recognition algorithms. None. 2551 Text Classification 2012 [188] [189] D. Roggen et al. Real World Activity Recognition Dataset Human Activity Recognition from wearable devices.
The ImageNet project is a large visual database designed for use in visual object recognition software research. More than 14 million [1] [2] images have been hand-annotated by the project to indicate what objects are pictured and in at least one million of the images, bounding boxes are also provided. [3]