enow.com Web Search

  1. Ads

    related to: three dimensional manifolds and marine water hose

Search results

  1. Results from the WOW.Com Content Network
  2. 3-manifold - Wikipedia

    en.wikipedia.org/wiki/3-manifold

    In mathematics, a 3-manifold is a topological space that locally looks like a three-dimensional Euclidean space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane (a tangent plane) to a small and close enough observer, all 3-manifolds look like our universe does to a small enough observer ...

  3. Hyperbolic 3-manifold - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_3-manifold

    Hyperbolic geometry is the most rich and least understood of the eight geometries in dimension 3 (for example, for all other geometries it is not hard to give an explicit enumeration of the finite-volume manifolds with this geometry, while this is far from being the case for hyperbolic manifolds).

  4. Classification of manifolds - Wikipedia

    en.wikipedia.org/wiki/Classification_of_manifolds

    There is a unique connected 0-dimensional manifold, namely the point, and disconnected 0-dimensional manifolds are just discrete sets, classified by cardinality. They have no geometry, and their study is combinatorics. A connected compact 1-dimensional manifold without boundary is homeomorphic (or diffeomorphic if it is smooth) to the circle.

  5. List of manifolds - Wikipedia

    en.wikipedia.org/wiki/List_of_manifolds

    4.3 Infinite-dimensional manifolds. 5 See also. 6 References. ... For more examples see 3-manifold. 4-manifolds. Complex projective plane; Del Pezzo surface; E 8 ...

  6. The geometry and topology of three-manifolds - Wikipedia

    en.wikipedia.org/wiki/The_geometry_and_topology...

    The geometry and topology of three-manifolds is a set of widely circulated notes for a graduate course taught at Princeton University by William Thurston from 1978 to 1980 describing his work on 3-manifolds. They were written by Thurston, assisted by students William Floyd and Steven Kerchoff. [1]

  7. Manifold - Wikipedia

    en.wikipedia.org/wiki/Manifold

    For two dimensional manifolds a key invariant property is the genus, or "number of handles" present in a surface. A torus is a sphere with one handle, a double torus is a sphere with two handles, and so on. Indeed, it is possible to fully characterize compact, two-dimensional manifolds on the basis of genus and orientability.

  1. Ads

    related to: three dimensional manifolds and marine water hose