enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lookup table - Wikipedia

    en.wikipedia.org/wiki/Lookup_table

    For data requests that fall between the table's samples, an interpolation algorithm can generate reasonable approximations by averaging nearby samples." [8] In data analysis applications, such as image processing, a lookup table (LUT) can be used to transform the input data into a more desirable output format. For example, a grayscale picture ...

  3. Approximate string matching - Wikipedia

    en.wikipedia.org/wiki/Approximate_string_matching

    Common applications of approximate matching include spell checking. [5] With the availability of large amounts of DNA data, matching of nucleotide sequences has become an important application. [1] Approximate matching is also used in spam filtering. [5] Record linkage is a common application where records from two disparate databases are matched.

  4. Function approximation - Wikipedia

    en.wikipedia.org/wiki/Function_approximation

    Several progressively more accurate approximations of the step function. An asymmetrical Gaussian function fit to a noisy curve using regression.. In general, a function approximation problem asks us to select a function among a well-defined class [citation needed] [clarification needed] that closely matches ("approximates") a target function [citation needed] in a task-specific way.

  5. Matching pursuit - Wikipedia

    en.wikipedia.org/wiki/Matching_pursuit

    Matching pursuit should represent the signal by just a few atoms, such as the three at the centers of the clearly visible ellipses. Matching pursuit (MP) is a sparse approximation algorithm which finds the "best matching" projections of multidimensional data onto the span of an over-complete (i.e., redundant) dictionary .

  6. Approximation algorithm - Wikipedia

    en.wikipedia.org/wiki/Approximation_algorithm

    Others are impossible to approximate within any constant, or even polynomial, factor unless P = NP, as in the case of the maximum clique problem. Therefore, an important benefit of studying approximation algorithms is a fine-grained classification of the difficulty of various NP-hard problems beyond the one afforded by the theory of NP ...

  7. Variational Bayesian methods - Wikipedia

    en.wikipedia.org/wiki/Variational_Bayesian_methods

    Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning.They are typically used in complex statistical models consisting of observed variables (usually termed "data") as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as ...

  8. Method of matched asymptotic expansions - Wikipedia

    en.wikipedia.org/wiki/Method_of_matched...

    The appropriate form of these expansions is not always clear: while a power-series expansion in may work, sometimes the appropriate form involves fractional powers of , functions such as ⁡, et cetera. As in the above example, we will obtain outer and inner expansions with some coefficients which must be determined by matching.

  9. Record linkage - Wikipedia

    en.wikipedia.org/wiki/Record_linkage

    Record linkage (also known as data matching, data linkage, entity resolution, and many other terms) is the task of finding records in a data set that refer to the same entity across different data sources (e.g., data files, books, websites, and databases).