enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Self-adjoint operator - Wikipedia

    en.wikipedia.org/wiki/Self-adjoint_operator

    In mathematics, a self-adjoint operator on a complex vector space V with inner product , is a linear map A (from V to itself) that is its own adjoint. That is, A x , y = x , A y {\displaystyle \langle Ax,y\rangle =\langle x,Ay\rangle } for all x , y {\displaystyle x,y} ∊ V .

  3. Compact operator on Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Compact_operator_on...

    For example, the space H can be decomposed as the orthogonal direct sum of two T–invariant closed linear subspaces: the kernel of T, and the orthogonal complement (ker T) ⊥ of the kernel (which is equal to the closure of the range of T, for any bounded self-adjoint operator). These basic facts play an important role in the proof of the ...

  4. Linear Operators (book) - Wikipedia

    en.wikipedia.org/wiki/Linear_Operators_(book)

    Linear Operators is a three-volume textbook on the theory of linear operators, written by Nelson Dunford and Jacob T. Schwartz. The three volumes are (I) General Theory; (II) Spectral Theory, Self Adjoint Operators in Hilbert Space; and (III) Spectral Operators. The first volume was published in 1958, the second in 1963, and the third in 1971.

  5. Extensions of symmetric operators - Wikipedia

    en.wikipedia.org/wiki/Extensions_of_symmetric...

    An operator that has a unique self-adjoint extension is said to be essentially self-adjoint; equivalently, an operator is essentially self-adjoint if its closure (the operator whose graph is the closure of the graph of ) is self-adjoint. In general, a symmetric operator could have many self-adjoint extensions or none at all.

  6. Stone's theorem on one-parameter unitary groups - Wikipedia

    en.wikipedia.org/wiki/Stone's_theorem_on_one...

    The Stone–von Neumann theorem generalizes Stone's theorem to a pair of self-adjoint operators, (,), satisfying the canonical commutation relation, and shows that these are all unitarily equivalent to the position operator and momentum operator on ().

  7. Normal operator - Wikipedia

    en.wikipedia.org/wiki/Normal_operator

    Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood. Examples of normal operators are unitary operators: N* = N −1; Hermitian operators (i.e., self-adjoint operators): N* = N; skew-Hermitian operators: N* = −N; positive operators: N = MM* for some M (so N is self-adjoint).

  8. Self-adjoint - Wikipedia

    en.wikipedia.org/wiki/Self-adjoint

    The set of self-adjoint elements is a real linear subspace of . From the previous property, it follows that A {\displaystyle {\mathcal {A}}} is the direct sum of two real linear subspaces, i.e. A = A s a ⊕ i A s a {\displaystyle {\mathcal {A}}={\mathcal {A}}_{sa}\oplus \mathrm {i} {\mathcal {A}}_{sa}} .

  9. Positive operator - Wikipedia

    en.wikipedia.org/wiki/Positive_operator

    In mathematics (specifically linear algebra, operator theory, and functional analysis) as well as physics, a linear operator acting on an inner product space is called positive-semidefinite (or non-negative) if, for every ⁡ (), , and , , where ⁡ is the domain of .