Search results
Results from the WOW.Com Content Network
In mathematics, a self-adjoint operator on a complex vector space V with inner product , is a linear map A (from V to itself) that is its own adjoint. That is, A x , y = x , A y {\displaystyle \langle Ax,y\rangle =\langle x,Ay\rangle } for all x , y {\displaystyle x,y} ∊ V .
The Stone–von Neumann theorem generalizes Stone's theorem to a pair of self-adjoint operators, (,), satisfying the canonical commutation relation, and shows that these are all unitarily equivalent to the position operator and momentum operator on ().
An operator that has a unique self-adjoint extension is said to be essentially self-adjoint; equivalently, an operator is essentially self-adjoint if its closure (the operator whose graph is the closure of the graph of ) is self-adjoint. In general, a symmetric operator could have many self-adjoint extensions or none at all.
The set of self-adjoint elements is a real linear subspace of . From the previous property, it follows that A {\displaystyle {\mathcal {A}}} is the direct sum of two real linear subspaces, i.e. A = A s a ⊕ i A s a {\displaystyle {\mathcal {A}}={\mathcal {A}}_{sa}\oplus \mathrm {i} {\mathcal {A}}_{sa}} .
Linear Operators is a three-volume textbook on the theory of linear operators, written by Nelson Dunford and Jacob T. Schwartz. The three volumes are (I) General Theory; (II) Spectral Theory, Self Adjoint Operators in Hilbert Space; and (III) Spectral Operators. The first volume was published in 1958, the second in 1963, and the third in 1971.
An operator is called essentially self-adjoint if its closure is self-adjoint. [40] An operator is essentially self-adjoint if and only if it has one and only one self-adjoint extension. [24] A symmetric operator may have more than one self-adjoint extension, and even a continuum of them. [26] A densely defined, symmetric operator T is ...
The term C*-algebra was introduced by I. E. Segal in 1947 to describe norm-closed subalgebras of B(H), namely, the space of bounded operators on some Hilbert space H. 'C' stood for 'closed'. [2] [3] In his paper Segal defines a C*-algebra as a "uniformly closed, self-adjoint algebra of bounded operators on a Hilbert space". [4]
In functional analysis, the Friedrichs extension is a canonical self-adjoint extension of a non-negative densely defined symmetric operator.It is named after the mathematician Kurt Friedrichs.