Search results
Results from the WOW.Com Content Network
A triangle whose side lengths are a Pythagorean triple is a right triangle and called a Pythagorean triangle. A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). [1] For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not.
A triangle in which one of the angles is a right angle is a right triangle, a triangle in which all of its angles are less than that angle is an acute triangle, and a triangle in which one of it angles is greater than that angle is an obtuse triangle. [8] These definitions date back at least to Euclid. [9]
The Encyclopedia of Triangle Centers (ETC) is an online list of thousands of points or "centers" associated with the geometry of a triangle. This resource is hosted at the University of Evansville. It started from a list of 400 triangle centers published in the 1998 book Triangle Centers and Central Triangles by Professor Clark Kimberling. [1]
In this right triangle: sin A = a/h; cos A = b/h; tan A = a/b. Trigonometric ratios are the ratios between edges of a right triangle. These ratios depend only on one acute angle of the right triangle, since any two right triangles with the same acute angle are similar. [31]
Two triangles are congruent if and only if they correspond under a finite product of line reflections. Two triangles with corresponding angles equal are congruent (i.e., all similar triangles are congruent). Hyperbolic triangles have some properties that are the opposite of the properties of triangles in spherical or elliptic geometry:
Triangles has received several critical reviews, garnering positive reviews from sites such as Publishers Weekly and being one of Entertainment Weekly's "Must Pick" books. Blog Critics said that the book "is a tale that is, on the one hand psychologically disturbing, and on the other hand, a story quite beautifully written."
In mathematics, modern triangle geometry, or new triangle geometry, is the body of knowledge relating to the properties of a triangle discovered and developed roughly since the beginning of the last quarter of the nineteenth century. Triangles and their properties were the subject of investigation since at least the time of Euclid.
Christopher Danielson developed a new set of blocks, called Twenty-First Century Pattern Blocks. [8] The rhombus in this set has the same size as the blue rhombus in the traditional set. The dart and the 30°–60°–90° triangle have the same area, while the kite and the hexagon are twice that area.