enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chebfun - Wikipedia

    en.wikipedia.org/wiki/Chebfun

    It is based on the idea of overloading MATLAB's commands for vectors and matrices to analogous commands for functions and operators. Thus, for example, whereas the SUM command in MATLAB adds up the elements of a vector, the SUM command in Chebfun evaluates a definite integral.

  3. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    In integral calculus, Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions. Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely e i x {\displaystyle e^{ix}} and e − i x {\displaystyle e^{-ix}} and then integrated.

  4. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.

  5. Romberg's method - Wikipedia

    en.wikipedia.org/wiki/Romberg's_method

    ROMBINT – code for MATLAB (author: Martin Kacenak) Free online integration tool using Romberg, Fox–Romberg, Gauss–Legendre and other numerical methods; SciPy implementation of Romberg's method; Romberg.jl — Julia implementation (supporting arbitrary factorizations, not just + points)

  6. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    If f(x) is a smooth function integrated over a small number of dimensions, and the domain of integration is bounded, there are many methods for approximating the integral to the desired precision. Numerical integration has roots in the geometrical problem of finding a square with the same area as a given plane figure ( quadrature or squaring ...

  7. Multiple integral - Wikipedia

    en.wikipedia.org/wiki/Multiple_integral

    Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the x-axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function (on the three-dimensional Cartesian plane where z = f(x, y)) and the plane which contains its domain. [1]

  8. Filon quadrature - Wikipedia

    en.wikipedia.org/wiki/Filon_quadrature

    Filon quadrature is widely used in physics and engineering for robust computation of Fourier-type integrals. Applications include evaluation of oscillatory Sommerfeld integrals for electromagnetic and seismic problems in layered media [7] [8] [9] and numerical solution to steady incompressible flow problems in fluid mechanics, [10] as well as various different problems in neutron scattering ...

  9. Gauss–Legendre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_quadrature

    Gauss–Legendre quadrature is optimal in a very narrow sense for computing integrals of a function f over [−1, 1], since no other quadrature rule integrates all degree 2n − 1 polynomials exactly when using n sample points. However, this measure of accuracy is not generally a very useful one---polynomials are very simple to integrate and ...