Search results
Results from the WOW.Com Content Network
In astronomy, the color index is a simple numerical expression that determines the color of an object, which in the case of a star gives its temperature. The lower the color index, the more blue (or hotter) the object is. Conversely, the larger the color index, the more red (or cooler) the object is.
The effective temperature of the Sun (5778 kelvins) is the temperature a black body of the same size must have to yield the same total emissive power.. The effective temperature of a star is the temperature of a black body with the same luminosity per surface area (F Bol) as the star and is defined according to the Stefan–Boltzmann law F Bol = σT eff 4.
Template documentation This template is primarily used by {{ list of largest stars row }} to simplify its code and allow for easier updating should values require changing. It calculates the radius of a star in comparison to the Solar radius R ☉ .
The temperature of stars other than the Sun can be approximated using a similar means by treating the emitted energy as a black body radiation. [28] So: L = 4 π R 2 σ T 4 {\displaystyle L=4\pi R^{2}\sigma T^{4}} where L is the luminosity , σ is the Stefan–Boltzmann constant, R is the stellar radius and T is the effective temperature .
where G is the gravitational constant, M is the mass of the star, R is the radius of the star, and L is the star's luminosity. As an example, the Sun 's thermal time scale is approximately 15.7 million years.
Effective temperature of a black body compared with the B−V and U−B color index of main sequence and supergiant stars in what is called a color-color diagram. [1] Stars emit less ultraviolet radiation than a black body with the same B−V index.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In massive stars (greater than about 1.5 M ☉), the core temperature is above about 1.8×10 7 K, so hydrogen-to-helium fusion occurs primarily via the CNO cycle. In the CNO cycle, the energy generation rate scales as the temperature to the 15th power, whereas the rate scales as the temperature to the 4th power in the proton-proton chains. [2]