Search results
Results from the WOW.Com Content Network
The predicate agrees with the comparison predicates (see section § Comparison predicates) when one floating-point number is less than the other. The main differences are: [34] NaN is sortable. NaN is treated as if it had a larger absolute value than Infinity (or any other floating-point numbers). (−NaN < −Infinity; +Infinity < +NaN.)
In computing, NaN (/ n æ n /), standing for Not a Number, is a particular value of a numeric data type (often a floating-point number) which is undefined as a number, such as the result of 0/0. Systematic use of NaNs was introduced by the IEEE 754 floating-point standard in 1985, along with the representation of other non-finite quantities ...
In a subnormal number, since the exponent is the least that it can be, zero is the leading significant digit (0.m 1 m 2 m 3...m p−2 m p−1), allowing the representation of numbers closer to zero than the smallest normal number. A floating-point number may be recognized as subnormal whenever its exponent has the least possible value.
The appearance of complex values in interpolation methods can be avoided by interpolating the inverse of f, resulting in the inverse quadratic interpolation method. Again, convergence is asymptotically faster than the secant method, but inverse quadratic interpolation often behaves poorly when the iterates are not close to the root.
All integers with seven or fewer decimal digits, and any 2 n for a whole number −149 ≤ n ≤ 127, can be converted exactly into an IEEE 754 single-precision floating-point value. In the IEEE 754 standard , the 32-bit base-2 format is officially referred to as binary32 ; it was called single in IEEE 754-1985 .
The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.
A sigmoid function is convex for values less than a particular point, and it is concave for values greater than that point: in many of the examples here, that point is 0. Examples [ edit ]
The decimal number 0.15625 10 represented in binary is 0.00101 2 (that is, 1/8 + 1/32). (Subscripts indicate the number base .) Analogous to scientific notation , where numbers are written to have a single non-zero digit to the left of the decimal point, we rewrite this number so it has a single 1 bit to the left of the "binary point".