Search results
Results from the WOW.Com Content Network
A sphere of radius r has surface area 4πr 2.. The surface area (symbol A) of a solid object is a measure of the total area that the surface of the object occupies. [1] The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra (i.e., objects with ...
The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables r {\displaystyle r} is the radius, C = 2 π r {\displaystyle C=2\pi r} is the circumference (the length of any one of its great circles ),
The formula for the surface area of a sphere is more difficult to derive: because a sphere has nonzero Gaussian curvature, it cannot be flattened out. The formula for the surface area of a sphere was first obtained by Archimedes in his work On the Sphere and Cylinder. The formula is: [6] A = 4πr 2 (sphere), where r is the radius of the sphere.
A sphere is a surface that can be defined parametrically (by x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ) or implicitly (by x 2 + y 2 + z 2 − r 2 = 0). A surface is a two-dimensional object, such as a sphere or paraboloid. [55]
This is a list of two-dimensional geometric shapes in Euclidean and other geometries. For mathematical objects in more dimensions, see list of mathematical shapes. For a broader scope, see list of shapes.
The area of a triangle is proportional to the excess of its angle sum over 180°. Two triangles with the same angle sum are equal in area. There is an upper bound for the area of triangles. The composition (product) of two reflections-across-a-great-circle may be considered as a rotation about either of the points of intersection of their axes.
An open surface with x-, y-, and z-contours shown.. In the part of mathematics referred to as topology, a surface is a two-dimensional manifold.Some surfaces arise as the boundaries of three-dimensional solid figures; for example, the sphere is the boundary of the solid ball.
If the sides of the cube were multiplied by 2, its surface area would be multiplied by the square of 2 and become 24 m 2. Its volume would be multiplied by the cube of 2 and become 8 m 3. The original cube (1 m sides) has a surface area to volume ratio of 6:1. The larger (2 m sides) cube has a surface area to volume ratio of (24/8) 3:1.