Search results
Results from the WOW.Com Content Network
A function is called a rational function if it can be written in the form [1] = ()where and are polynomial functions of and is not the zero function.The domain of is the set of all values of for which the denominator () is not zero.
A function is continuous if it is continuous at every point of its domain. The limit of a real-valued function of a real variable is as follows. [1] Let a be a point in topological closure of the domain X of the function f. The function, f has a limit L when x tends toward a, denoted = (),
Rational functions are quotients of two polynomial functions, and their domain is the real numbers with a finite number of them removed to avoid division by zero. The simplest rational function is the function , whose graph is a hyperbola, and whose domain is the whole real line except for 0.
Rational functions can be either finite or infinite for finite values, or finite or infinite for infinite x values. Thus, rational functions can easily be incorporated into a rational function model. Rational function models can often be used to model complicated structure with a fairly low degree in both the numerator and denominator.
The image of a function f(x 1, x 2, …, x n) is the set of all values of f when the n-tuple (x 1, x 2, …, x n) runs in the whole domain of f.For a continuous (see below for a definition) real-valued function which has a connected domain, the image is either an interval or a single value.
In algebraic geometry, the function field of an algebraic variety V consists of objects that are interpreted as rational functions on V.In classical algebraic geometry they are ratios of polynomials; in complex geometry these are meromorphic functions and their higher-dimensional analogues; in modern algebraic geometry they are elements of some quotient ring's field of fractions.
R can be identified with the ring of all real-valued rational functions defined (i.e. finite) in a neighborhood of 0 on the real axis (with the neighborhood depending on the function). It is a discrete valuation ring; the "unique" irreducible element is X and the valuation assigns to each function f the order (possibly 0) of the zero of f at 0.
A function f from X to Y. The set of points in the red oval X is the domain of f. Graph of the real-valued square root function, f(x) = √ x, whose domain consists of all nonnegative real numbers. In mathematics, the domain of a function is the set of inputs accepted by the function.