Search results
Results from the WOW.Com Content Network
In mathematics, a probability measure is a real-valued function defined on a set of events in a σ-algebra that satisfies measure properties such as countable additivity. [1] The difference between a probability measure and the more general notion of measure (which includes concepts like area or volume ) is that a probability measure must ...
In case (1) above, the conditional probability that the longitude λ lies in a set E given that φ = 0 can be written P(λ ∈ E | φ = 0). Elementary probability theory suggests this can be computed as P(λ ∈ E and φ = 0)/P(φ = 0), but that expression is not well-defined since P(φ = 0) = 0.
This measure coincides with the pmf for discrete variables and PDF for continuous variables, making the measure-theoretic approach free of fallacies. The probability of a set E {\displaystyle E\,} in the σ-algebra F {\displaystyle {\mathcal {F}}\,} is defined as
In probability theory, Markov's inequality gives an upper bound on the probability that a non-negative random variable is greater than or equal to some positive constant. Markov's inequality is tight in the sense that for each chosen positive constant, there exists a random variable such that the inequality is in fact an equality. [1]
The term measure here refers to the measure-theoretic approach to probability. Violations of unit measure have been reported in arguments about the outcomes of events [2] [3] under which events acquire "probabilities" that are not the probabilities of probability theory. In situations such as these the term "probability" serves as a false ...
The measure-theoretic approach to stochastic processes starts with a probability space and defines a stochastic process as a family of functions on this probability space. However, in many applications the starting point is really the finite-dimensional distributions of the stochastic process.
When the underlying measure on (, ()) is finite, the distribution function in Definition 3 differs slightly from the standard definition of the distribution function (in the sense of probability theory) as given by Definition 2 in that for the former, = while for the latter, () = = ().
In fact, the discrete case (although without the restriction to probability measures) is the first step in proving the general measure-theoretic formulation, as the general version follows therefrom by an application of the monotone convergence theorem. [7] Without any major changes, the result can also be formulated in the setting of outer ...