enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radiative flux - Wikipedia

    en.wikipedia.org/wiki/Radiative_flux

    Radiative flux. Radiative flux, also known as radiative flux density or radiation flux (or sometimes power flux density[1]), is the amount of power radiated through a given area, in the form of photons or other elementary particles, typically measured in W/m 2. [2] It is used in astronomy to determine the magnitude and spectral class of a star ...

  3. Spectral flux density - Wikipedia

    en.wikipedia.org/wiki/Spectral_flux_density

    Spectral flux density. In spectroscopy, spectral flux density is the quantity that describes the rate at which energy is transferred by electromagnetic radiation through a real or virtual surface, per unit surface area and per unit wavelength (or, equivalently, per unit frequency). It is a radiometric rather than a photometric measure.

  4. Wien's displacement law - Wikipedia

    en.wikipedia.org/wiki/Wien's_displacement_law

    Formally, the wavelength version of Wien's displacement law states that the spectral radiance of black-body radiation per unit wavelength, peaks at the wavelength given by: where T is the absolute temperature and b is a constant of proportionality called Wien's displacement constant, equal to 2.897 771 955... × 10−3 m⋅K, [1][2] or b ≈ ...

  5. Spectral index - Wikipedia

    en.wikipedia.org/wiki/Spectral_index

    Spectral index. In astronomy, the spectral index of a source is a measure of the dependence of radiative flux density (that is, radiative flux per unit of frequency) on frequency. Given frequency in Hz and radiative flux density in Jy, the spectral index is given implicitly by Note that if flux does not follow a power law in frequency, the ...

  6. Radiant flux - Wikipedia

    en.wikipedia.org/wiki/Radiant_flux

    A flow chart describing the relationship of various physical quantities, including radiant flux and exitance. In radiometry, radiant flux or radiant power is the radiant energy emitted, reflected, transmitted, or received per unit time, and spectral flux or spectral power is the radiant flux per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency ...

  7. Luminous efficiency function - Wikipedia

    en.wikipedia.org/wiki/Luminous_efficiency_function

    Φ v is the luminous flux, in lumens; Φ e,λ is the spectral radiant flux, in watts per nanometre; y (λ), also known as V(λ), is the luminosity function, dimensionless; λ is the wavelength, in nanometres. Formally, the integral is the inner product of the luminosity function with the spectral power distribution. [2]

  8. Radiance - Wikipedia

    en.wikipedia.org/wiki/Radiance

    Radiant flux: Φ e [nb 2] watt: W = J/s M⋅L 2 ⋅T −3: Radiant energy emitted, reflected, transmitted or received, per unit time. This is sometimes also called "radiant power", and called luminosity in Astronomy. Spectral flux: Φ e,ν [nb 3] watt per hertz: W/Hz: M⋅L 2 ⋅T −2: Radiant flux per unit frequency or wavelength. The latter ...

  9. AB magnitude - Wikipedia

    en.wikipedia.org/wiki/AB_magnitude

    The monochromatic AB magnitude is defined as the logarithm of a spectral flux density with the usual scaling of astronomical magnitudes and a zero-point of about 3 631 janskys (symbol Jy), [1] where 1 Jy = 10−26 W Hz−1 m−2 = 10−23 erg s−1 Hz−1 cm−2 ("about" because the true definition of the zero point is based on magnitudes as ...