Search results
Results from the WOW.Com Content Network
In computer science, the double dabble algorithm is used to convert binary numbers into binary-coded decimal (BCD) notation. [ 1 ] [ 2 ] It is also known as the shift-and-add -3 algorithm , and can be implemented using a small number of gates in computer hardware, but at the expense of high latency .
This scheme can also be referred to as Simple Binary-Coded Decimal (SBCD) or BCD 8421, and is the most common encoding. [12] Others include the so-called "4221" and "7421" encoding – named after the weighting used for the bits – and "Excess-3". [13]
In the decimal encoding, it is encoded as a series of p decimal digits (using the densely packed decimal (DPD) encoding). This makes conversion to decimal form efficient, but requires a specialized decimal ALU to process. In the binary integer decimal (BID) encoding, it is encoded as a binary number.
Binary-coded decimal (BCD) is a binary encoded representation of integer values that uses a 4-bit nibble to encode decimal digits. Four binary bits can encode up to 16 distinct values; but, in BCD-encoded numbers, only ten values in each nibble are legal, and encode the decimal digits zero, through nine.
Given a decimal number, it can be split into two pieces of about the same size, each of which is converted to binary, whereupon the first converted piece is multiplied by 10 k and added to the second converted piece, where k is the number of decimal digits in the second, least-significant piece before conversion.
The binary-reflected Gray code list for n bits can be generated recursively from the list for n − 1 bits by reflecting the list (i.e. listing the entries in reverse order), prefixing the entries in the original list with a binary 0, prefixing the entries in the reflected list with a binary 1, and then concatenating the original list with the ...
The original binary value will be preserved by converting to decimal and back again using: [58] 5 decimal digits for binary16, 9 decimal digits for binary32, 17 decimal digits for binary64, 36 decimal digits for binary128. For other binary formats, the required number of decimal digits is [h]
0110 (decimal 6) AND 1011 (decimal 11) = 0010 (decimal 2) Because of this property, it becomes easy to check the parity of a binary number by checking the value of the lowest valued bit. Using the example above: 0110 (decimal 6) AND 0001 (decimal 1) = 0000 (decimal 0) Because 6 AND 1 is zero, 6 is divisible by two and therefore even.