Search results
Results from the WOW.Com Content Network
Conversions between units in the metric system are defined by their prefixes ... = 1.609 344 × 10 3 m/s 2: standard gravity: g 0: ≡ 9.806 65 m/s 2 = 9.806 65 m/s 2 ...
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
Quantities, Units and Symbols in Physical Chemistry, also known as the Green Book, is a compilation of terms and symbols widely used in the field of physical chemistry. It also includes a table of physical constants , tables listing the properties of elementary particles , chemical elements , and nuclides , and information about conversion ...
In engineering and science, dimensional analysis is the analysis of the relationships between different physical quantities by identifying their base quantities (such as length, mass, time, and electric current) and units of measurement (such as metres and grams) and tracking these dimensions as calculations or comparisons are performed.
L 2 M T −1: scalar Angular acceleration: ω a: Change in angular velocity per unit time rad/s 2: T −2: Area: A: Extent of a surface m 2: L 2: extensive, bivector or scalar Area density: ρ A: Mass per unit area kg⋅m −2: L −2 M: intensive Capacitance: C: Stored charge per unit electric potential farad (F = C/V) L −2 M −1 T 4 I 2 ...
Its symbol is written in several forms as m/s 2, m·s −2 or ms −2, , or less commonly, as (m/s)/s. [ 1 ] As acceleration, the unit is interpreted physically as change in velocity or speed per time interval, i.e. metre per second per second and is treated as a vector quantity.
No name has yet been given to the unit of mass and, in fact, as we have developed the theory of dynamics no name is necessary. Whenever the mass, m, appears in our formulae, we substitute the ratio of the convenient force-acceleration pair (w/g), and measure the mass in lbs. per ft./sec. 2 or in grams per cm./sec. 2.
For example, the CGS unit of force is the dyne, which is defined as 1 g⋅cm/s 2, so the SI unit of force, the newton (1 kg⋅m/s 2), is equal to 100 000 dynes. On the other hand, in measurements of electromagnetic phenomena (involving units of charge , electric and magnetic fields, voltage , and so on), converting between CGS and SI is less ...