Search results
Results from the WOW.Com Content Network
However, if A is a field with more than 2 elements, then E(2, A) = [GL(2, A), GL(2, A)], and if A is a field with more than 3 elements, E(2, A) = [SL(2, A), SL(2, A)]. [ dubious – discuss ] In some circumstances these coincide: the special linear group over a field or a Euclidean domain is generated by transvections, and the stable special ...
In mathematics, the special linear group SL(2, R) or SL 2 (R) is the group of 2 × 2 real matrices with determinant one: (,) = {():,,, =}.It is a connected non-compact simple real Lie group of dimension 3 with applications in geometry, topology, representation theory, and physics.
In mathematics, the special linear Lie algebra of order over a field, denoted or (,), is the Lie algebra of all the matrices (with entries in ) with trace zero and with the Lie bracket [,]:= given by the commutator. This algebra is well studied and understood, and is often used as a model for the study of other Lie algebras.
The generator of any continuous symmetry implied by Noether's theorem, the generators of a Lie group being a special case. In this case, a generator is sometimes called a charge or Noether charge, examples include: angular momentum as the generator of rotations, [3] linear momentum as the generator of translations, [3]
Special groups include the general linear group, the special linear group, and the symplectic group. Special groups are necessarily connected. Products of special groups are special. The projective linear group is not special because there exist Azumaya algebras, which are trivial over a finite separable extension, but not over the base field.
The group GL n (K) itself; The special linear group SL n (K) (the subgroup of matrices with determinant 1); The group of invertible upper (or lower) triangular matrices; If g i is a collection of elements in GL n (K) indexed by a set I, then the subgroup generated by the g i is a linear group.
Since all symplectic matrices have determinant 1, the symplectic group is a subgroup of the special linear group SL(2n, F). When n = 1, the symplectic condition on a matrix is satisfied if and only if the determinant is one, so that Sp(2, F) = SL(2, F). For n > 1, there are additional conditions, i.e. Sp(2n, F) is then a proper subgroup of SL ...
A noteworthy subgroup of the projective general linear group PGL(2, Z) (and of the projective special linear group PSL(2, Z[i])) is the symmetries of the set {0, 1, ∞} ⊂ P 1 (C) [note 6] which is known as the anharmonic group, and arises as the symmetries of the six cross-ratios.