enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Trapezoidal rule - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_rule

    In calculus, the trapezoidal rule (also known as the trapezoid rule or trapezium rule) [a] is a technique for numerical integration, i.e., approximating the definite integral: (). The trapezoidal rule works by approximating the region under the graph of the function f ( x ) {\displaystyle f(x)} as a trapezoid and calculating its area.

  3. Romberg's method - Wikipedia

    en.wikipedia.org/wiki/Romberg's_method

    To estimate the area under a curve the trapezoid rule is applied first to one-piece, then two, then four, and so on. One-piece. Note since it starts and ends at zero, this approximation yields zero area. Two-piece Four-piece Eight-piece. After trapezoid rule estimates are obtained, Richardson extrapolation is applied.

  4. Riemann sum - Wikipedia

    en.wikipedia.org/wiki/Riemann_sum

    Taking an example, the area under the curve y = x 2 over [0, 2] can be procedurally computed using Riemann's method. The interval [0, 2] is firstly divided into n subintervals, each of which is given a width of 2 n {\displaystyle {\tfrac {2}{n}}} ; these are the widths of the Riemann rectangles (hereafter "boxes").

  5. Area under the curve (pharmacokinetics) - Wikipedia

    en.wikipedia.org/wiki/Area_under_the_curve...

    The area under the effect curve (AUEC) is an integral of the effect of a drug over time, estimated as a previously-established function of concentration. It was proposed to be used instead of AUC in animal-to-human dose translation, as computer simulation shows that it could cope better with half-life and dosing schedule variations than AUC.

  6. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    The area of the surface of a sphere is equal to quadruple the area of a great circle of this sphere. The area of a segment of the parabola cut from it by a straight line is 4/3 the area of the triangle inscribed in this segment. For the proof of the results Archimedes used the Method of exhaustion of Eudoxus.

  7. Lebesgue integral - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_integral

    While the Riemann integral considers the area under a curve as made out of vertical rectangles, the Lebesgue definition considers horizontal slabs that are not necessarily just rectangles, and so it is more flexible. For this reason, the Lebesgue definition makes it possible to calculate integrals for a broader class of functions.

  8. Squaring the circle - Wikipedia

    en.wikipedia.org/wiki/Squaring_the_circle

    The problem of finding the area under an arbitrary curve, now known as integration in calculus, or quadrature in numerical analysis, was known as squaring before the invention of calculus. [10] Since the techniques of calculus were unknown, it was generally presumed that a squaring should be done via geometric constructions, that is, by compass ...

  9. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    This method was further developed and employed by Archimedes in the 3rd century BC and used to calculate the area of a circle, the surface area and volume of a sphere, area of an ellipse, the area under a parabola, the volume of a segment of a paraboloid of revolution, the volume of a segment of a hyperboloid of revolution, and the area of a ...