Search results
Results from the WOW.Com Content Network
Paris' law (also known as the Paris–Erdogan equation) is a crack growth equation that gives the rate of growth of a fatigue crack. The stress intensity factor K {\displaystyle K} characterises the load around a crack tip and the rate of crack growth is experimentally shown to be a function of the range of stress intensity Δ K {\displaystyle ...
In true corrosion fatigue, the fatigue-crack-growth rate is enhanced by corrosion; this effect is seen in all three regions of the fatigue-crack growth-rate diagram. The diagram on the left is a schematic of crack-growth rate under true corrosion fatigue; the curve shifts to a lower stress-intensity-factor range in the corrosive environment.
The growth of a fatigue crack can result in catastrophic failure, particularly in the case of aircraft. When many growing fatigue cracks interact with one another it is known as widespread fatigue damage. A crack growth equation can be used to ensure safety, both in the design phase and during operation, by predicting the size of cracks.
As such, the volume of the oxides can be interpreted as a wedge inserted into the crack, reducing the effect stress intensity range. Experiments have shown that oxide-induced crack closure occurs at both room and elevated temperature, and the oxide build-up is more noticeable at low R-ratios and low (near-threshold) crack growth rates. [11]
The stress intensity factor at the crack tip of a compact tension specimen is [4] = [() / / + / / + /] where is the applied load, is the thickness of the specimen, is the crack length, and is the effective width of the specimen being the distance between the centreline of the holes and the backface of the coupon.
Fastran is a computer program for calculating the rate of fatigue crack growth by combining crack growth equations and a simulation of the plasticity at the crack tip. Fastran models accelerations and retardation and other variable amplitude loading effects in crack growth using a crack closure model.
Under fatigue loading, the range of movement of the crack tip during a loading cycle can be used for determining the rate of fatigue growth using a crack growth equation. The crack extension for a cycle d a / d N {\displaystyle da/dN} , is typically of the order of Δ δ t {\displaystyle \Delta \delta _{\text{t}}} .
This simplification allows the number of cycles until failure of a component to be determined for each rainflow cycle using either Miner's rule to calculate the fatigue damage, or in a crack growth equation to calculate the crack increments. [2] Both methods give an estimate of the fatigue life of a component.