Search results
Results from the WOW.Com Content Network
The electron is a charged particle with charge − e, where e is the unit of elementary charge. Its angular momentum comes from two types of rotation: spin and orbital motion. From classical electrodynamics, a rotating distribution of electric charge produces a magnetic dipole, so that it behaves like a tiny bar magnet.
The Weiss magneton was experimentally derived in 1911 as a unit of magnetic moment equal to 1.53 × 10 −24 joules per tesla, which is about 20% of the Bohr magneton. In the summer of 1913, the values for the natural units of atomic angular momentum and magnetic moment were obtained by the Danish physicist Niels Bohr as a consequence of his ...
The quantity μ eff is effectively dimensionless, but is often stated as in units of Bohr magneton (μ B). [12] For substances that obey the Curie law, the effective magnetic moment is independent of temperature. For other substances μ eff is temperature dependent, but the dependence is small if the Curie-Weiss law holds and the Curie ...
The magnetic moment of the electron is =, where μ B is the Bohr magneton, S is electron spin, and the g-factor g S is 2 according to Dirac's theory, but due to quantum electrodynamic effects it is slightly larger in reality: 2.002 319 304 36.
The spin magnetic moment of the electron is =, where is the spin (or intrinsic angular-momentum) vector, is the Bohr magneton, and = is the electron-spin g-factor. Here μ {\displaystyle {\boldsymbol {\mu }}} is a negative constant multiplied by the spin , so the spin magnetic moment is antiparallel to the spin.
The Bohr model [9] proposed electrons in circular orbit around the nucleus with quantized values of angular momentum. Instead of radiating energy continuously, as classical electrodynamics demanded from an accelerating charge, Bohr's electron radiated discretely when it "leaped" from one state of angular momentum to another.
As of late-2024, the fastest-charging EV for sale in the UK is the Lotus Eletre, which can fill its battery at up to 350 kW – conveniently, that’s also the same rate as the most powerful ...
Now one should consider the quantum LC circuit as a "black wave box" (BWB), which has no electric or magnetic charges, but waves. Furthermore, this BWB could be "closed" (in Bohr atom or in the vacuum for photons), or "open" (as for QHE and Josephson junction). So, the quantum LC circuit should has BWB and "input – output" supplements.