Search results
Results from the WOW.Com Content Network
A parametric equation for the sphere with radius > and center (,,) can be ... where ρ is the density (the ratio of mass to volume). Other geometric properties
In all cases, the equations are collectively called a parametric representation, [2] or parametric system, [3] or parameterization (alternatively spelled as parametrisation) of the object. [ 1 ] [ 4 ] [ 5 ]
The resulting equation: ¨ = shows that the velocity = of the center of mass is constant, from which follows that the total momentum m 1 v 1 + m 2 v 2 is also constant (conservation of momentum). Hence, the position R ( t ) of the center of mass can be determined at all times from the initial positions and velocities.
For example, one sphere that is described in Cartesian coordinates with the equation x 2 + y 2 + z 2 = c 2 can be described in spherical coordinates by the simple equation r = c. (In this system—shown here in the mathematics convention—the sphere is adapted as a unit sphere, where the radius is set to unity and then can generally be ignored ...
ellipsoid as an affine image of the unit sphere. The key to a parametric representation of an ellipsoid in general position is the alternative definition: An ellipsoid is an affine image of the unit sphere. An affine transformation can be represented by a translation with a vector f 0 and a regular 3 × 3 matrix A:
A parametric surface is a surface in the Euclidean space which is defined by a parametric equation with two parameters :. Parametric representation is a very general way to specify a surface, as well as implicit representation .
It consists of a mass m moving without friction on the surface of a sphere. The only forces acting on the mass are the reaction from the sphere and gravity . Owing to the spherical geometry of the problem, spherical coordinates are used to describe the position of the mass in terms of ( r , θ , ϕ ) {\displaystyle (r,\theta ,\phi )} , where r ...
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...