Search results
Results from the WOW.Com Content Network
The electric dipole moment is a measure of the separation of positive and negative electrical charges within a system: that is, a measure of the system's overall polarity. The SI unit for electric dipole moment is the coulomb-metre (C⋅m). The debye (D) is another unit of measurement used in atomic physics and chemistry.
The transition dipole moment is useful for determining if transitions are allowed under the electric dipole interaction. For example, the transition from a bonding π {\displaystyle \pi } orbital to an antibonding π ∗ {\displaystyle \pi ^{*}} orbital is allowed because the integral defining the transition dipole moment is nonzero.
The overall dipole moment of a molecule may be approximated as a vector sum of bond dipole moments. As a vector sum it depends on the relative orientation of the bonds, so that from the dipole moment information can be deduced about the molecular geometry.
The polarizability of an atom or molecule is defined as the ratio of its induced dipole moment to the local electric field; in a crystalline solid, one considers the dipole moment per unit cell. [1] Note that the local electric field seen by a molecule is generally different from the macroscopic electric field that would be measured externally.
The electron's electric dipole moment (EDM) must be collinear with the direction of the electron's magnetic moment (spin). [1] Within the Standard Model, such a dipole is predicted to be non-zero but very small, at most 10 −38 e⋅cm, [2] where e stands for the elementary charge.
A dipole is characterised by its dipole moment, a vector quantity shown in the figure as the blue arrow labeled M. It is the relationship between the electric field and the dipole moment that gives rise to the behaviour of the dielectric. (Note that the dipole moment points in the same direction as the electric field in the figure.
In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment (symbol μ e) is −9.284 764 6917 (29) × 10 −24 J⋅T −1. [1]
Transition dipole moment, the electrical dipole moment in quantum mechanics; Molecular dipole moment, the electric dipole moment of a molecule; Bond dipole moment, the measure of polarity of a chemical bond; Electron electric dipole moment, the measure of the charge distribution within an electron; Magnetic dipole moment, the measure of the ...