Search results
Results from the WOW.Com Content Network
In materials science, fatigue is the initiation and propagation of cracks in a material due to cyclic loading. Once a fatigue crack has initiated, it grows a small amount with each loading cycle, typically producing striations on some parts of the fracture surface.
Low cycle fatigue (LCF) has two fundamental characteristics: plastic deformation in each cycle; and low cycle phenomenon, in which the materials have finite endurance for this type of load. The term cycle refers to repeated applications of stress that lead to eventual fatigue and failure; low-cycle pertains to a long period between applications.
Within the branch of materials science known as material failure theory, the Goodman relation (also called a Goodman diagram, a Goodman-Haigh diagram, a Haigh diagram or a Haigh-Soderberg diagram) is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. [1]
Basquin's law of fatigue states that the lifetime of the system has a power-law dependence on the external load amplitude, , where the exponent has a strong material dependence. [1] It is useful in expressing S-N relationships .
The growth of a fatigue crack can result in catastrophic failure, particularly in the case of aircraft. When many growing fatigue cracks interact with one another it is known as widespread fatigue damage. A crack growth equation can be used to ensure safety, both in the design phase and during operation, by predicting the size of cracks.
The fatigue limit or endurance limit is the stress level below which an infinite number of loading cycles can be applied to a material without causing fatigue failure. [1] Some metals such as ferrous alloys and titanium alloys have a distinct limit, [ 2 ] whereas others such as aluminium and copper do not and will eventually fail even from ...
Corrosion fatigue is fatigue in a corrosive environment. It is the mechanical degradation of a material under the joint action of corrosion and cyclic loading. Nearly all engineering structures experience some form of alternating stress, and are exposed to harmful environments during their service life.
Static fatigue describes how prolonged and constant cyclic stress weakens a material until it breaks apart, which is called failure. [1] Static fatigue is sometimes called "delayed fracture". [ 2 ] The damage occurs at a lower stress level than the stress level needed to create a normal tensile fracture. [ 2 ]