enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ordinary differential equation - Wikipedia

    en.wikipedia.org/wiki/Ordinary_differential_equation

    In the case of a first order ODE that is non-homogeneous we need to first find a solution to the homogeneous portion of the DE, otherwise known as the associated homogeneous equation, and then find a solution to the entire non-homogeneous equation by guessing.

  3. Homogeneous differential equation - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_differential...

    A linear differential equation that fails this condition is called inhomogeneous. A linear differential equation can be represented as a linear operator acting on y(x) where x is usually the independent variable and y is the dependent variable. Therefore, the general form of a linear homogeneous differential equation is =

  4. Variation of parameters - Wikipedia

    en.wikipedia.org/wiki/Variation_of_parameters

    In mathematics, variation of parameters, also known as variation of constants, is a general method to solve inhomogeneous linear ordinary differential equations.. For first-order inhomogeneous linear differential equations it is usually possible to find solutions via integrating factors or undetermined coefficients with considerably less effort, although those methods leverage heuristics that ...

  5. Method of undetermined coefficients - Wikipedia

    en.wikipedia.org/wiki/Method_of_undetermined...

    Consider a linear non-homogeneous ordinary differential equation of the form = + (+) = where () denotes the i-th derivative of , and denotes a function of .. The method of undetermined coefficients provides a straightforward method of obtaining the solution to this ODE when two criteria are met: [2]

  6. Exponential response formula - Wikipedia

    en.wikipedia.org/wiki/Exponential_response_formula

    The ERF method of finding a particular solution of a non-homogeneous differential equation is applicable if the non-homogeneous equation is or could be transformed to form () = + + +; where , are real or complex numbers and () is homogeneous linear differential equation of any order. Then, the exponential response formula can be applied to each ...

  7. Green's function - Wikipedia

    en.wikipedia.org/wiki/Green's_function

    The primary use of Green's functions in mathematics is to solve non-homogeneous boundary value problems. In modern theoretical physics , Green's functions are also usually used as propagators in Feynman diagrams ; the term Green's function is often further used for any correlation function .

  8. Duhamel's principle - Wikipedia

    en.wikipedia.org/wiki/Duhamel's_principle

    Duhamel's principle is the result that the solution to an inhomogeneous, linear, partial differential equation can be solved by first finding the solution for a step input, and then superposing using Duhamel's integral. Suppose we have a constant coefficient, m-th order inhomogeneous ordinary differential equation.

  9. d'Alembert's formula - Wikipedia

    en.wikipedia.org/wiki/D'Alembert's_formula

    The only difference between a homogeneous and an inhomogeneous (partial) differential equation is that in the homogeneous form we only allow 0 to stand on the right side ((,) =), while the inhomogeneous one is much more general, as in (,) could be any function as long as it's continuous and can be continuously differentiated twice.