enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Line–sphere intersection - Wikipedia

    en.wikipedia.org/wiki/Line–sphere_intersection

    2. Point intersection. 3. Two point intersection. In analytic geometry, a line and a sphere can intersect in three ways: No intersection at all; Intersection in exactly one point; Intersection in two points. Methods for distinguishing these cases, and determining the coordinates for the

  3. Lambert's problem - Wikipedia

    en.wikipedia.org/wiki/Lambert's_problem

    The transfer time of a body moving between two points on a conic trajectory is a function only of the sum of the distances of the two points from the origin of the force, the linear distance between the points, and the semimajor axis of the conic. [2]

  4. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    For example, as three parallel planes do not have a common point, the solution set of their equations is empty; the solution set of the equations of three planes intersecting at a point is single point; if three planes pass through two points, their equations have at least two common solutions; in fact the solution set is infinite and consists ...

  5. Linear interpolation - Wikipedia

    en.wikipedia.org/wiki/Linear_interpolation

    Given the two red points, the blue line is the linear interpolant between the points, and the value y at x may be found by linear interpolation. In mathematics, linear interpolation is a method of curve fitting using linear polynomials to construct new data points within the range of a discrete set of known data points.

  6. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Line–line_intersection

    The x and y coordinates of the point of intersection of two non-vertical lines can easily be found using the following substitutions and rearrangements. Suppose that two lines have the equations y = ax + c and y = bx + d where a and b are the slopes (gradients) of the lines and where c and d are the y-intercepts of the lines.

  7. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.

  8. Convex combination - Wikipedia

    en.wikipedia.org/wiki/Convex_combination

    A conical combination is a linear combination with nonnegative coefficients. When a point is to be used as the reference origin for defining displacement vectors, then is a convex combination of points ,, …, if and only if the zero displacement is a non-trivial conical combination of their respective displacement vectors relative to .

  9. Linear combination - Wikipedia

    en.wikipedia.org/wiki/Linear_combination

    First, the first equation simply says that a 3 is 1. Knowing that, we can solve the second equation for a 2, which comes out to −1. Finally, the last equation tells us that a 1 is also −1. Therefore, the only possible way to get a linear combination is with these coefficients. Indeed,