Search results
Results from the WOW.Com Content Network
The axis of symmetry of a two-dimensional figure is a line such that, if a perpendicular is constructed, any two points lying on the perpendicular at equal distances from the axis of symmetry are identical. Another way to think about it is that if the shape were to be folded in half over the axis, the two halves would be identical as mirror ...
In geometry, circular symmetry is a type of continuous symmetry for a planar object that can be rotated by any arbitrary angle and map onto itself. Rotational circular symmetry is isomorphic with the circle group in the complex plane , or the special orthogonal group SO(2), and unitary group U(1).
The symmetry group of a square belongs to the family of dihedral groups, D n (abstract group type Dih n), including as many reflections as rotations. The infinite rotational symmetry of the circle implies reflection symmetry as well, but formally the circle group S 1 is distinct from Dih(S 1) because the latter explicitly includes the reflections.
The type of symmetry is determined by the way the pieces are organized, or by the type of transformation: An object has reflectional symmetry (line or mirror symmetry) if there is a line (or in 3D a plane) going through it which divides it into two pieces that are mirror images of each other. [6]
There is no geometric figure that has as full symmetry group the circle group, but for a vector field it may apply (see the three-dimensional case below). the orthogonal group O(2) consisting of all rotations about a fixed point and reflections in any axis through that fixed point. This is the symmetry group of a circle.
Rotational symmetry of order n, also called n-fold rotational symmetry, or discrete rotational symmetry of the n th order, with respect to a particular point (in 2D) or axis (in 3D) means that rotation by an angle of (180°, 120°, 90°, 72°, 60°, 51 3 ⁄ 7 °, etc.) does not change the object. A "1-fold" symmetry is no symmetry (all ...
Hexagonal tiling is the densest way to arrange circles in two dimensions. The honeycomb conjecture states that hexagonal tiling is the best way to divide a surface into regions of equal area with the least total perimeter.
The circle is a highly symmetric shape: every line through the centre forms a line of reflection symmetry, and it has rotational symmetry around the centre for every angle. Its symmetry group is the orthogonal group O(2, R ).