Search results
Results from the WOW.Com Content Network
The Matrix Template Library (MTL) is a linear algebra library for C++ programs. The MTL uses template programming , which considerably reduces the code length. All matrices and vectors are available in all classical numerical formats: float , double , complex<float> or complex<double> .
Eigen is a high-level C++ library of template headers for linear algebra, matrix and vector operations, geometrical transformations, numerical solvers and related algorithms. . Eigen is open-source software licensed under the Mozilla Public License 2.0 since version 3.1
Basic Linear Algebra Subprograms (BLAS) is a specification that prescribes a set of low-level routines for performing common linear algebra operations such as vector addition, scalar multiplication, dot products, linear combinations, and matrix multiplication.
C++ template library; binds to optimized BLAS such as the Intel MKL; Includes matrix decompositions, non-linear solvers, and machine learning tooling Eigen: Benoît Jacob C++ 2008 3.4.0 / 08.2021 Free MPL2: Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms. Fastor [5]
Arm's optimized math routines; GCE-Math is a version of C/C++ math functions written for C++ constexpr (compile-time calculation) CORE-MATH, correctly rounded for single and double precision. SIMD (vectorized) math libraries include SLEEF, Yeppp!, and Agner Fog's VCL, plus a few closed-source ones like SVML and DirectXMath. [9]
Matrix representation is a method used by a computer language to store column-vector matrices of more than one dimension in memory. Fortran and C use different schemes for their native arrays. Fortran uses "Column Major" ( AoS ), in which all the elements for a given column are stored contiguously in memory.
Versions exist for both C++ and the Java programming language. The C++ version uses the Template Numerical Toolkit for lower-level operations. The Java version provides the lower-level operations itself.
For example, to perform an element by element sum of two arrays, a and b to produce a third c, it is only necessary to write c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x)