enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ray transfer matrix analysis - Wikipedia

    en.wikipedia.org/wiki/Ray_transfer_matrix_analysis

    R = radius of curvature, R > 0 for concave, valid in the paraxial approximation θ is the mirror angle of incidence in the horizontal plane. Thin lens f = focal length of lens where f > 0 for convex/positive (converging) lens.

  3. Vergence (optics) - Wikipedia

    en.wikipedia.org/wiki/Vergence_(optics)

    For concave lenses, the focal point is on the back side of the lens, or the output side of the focal plane, and is negative in power. A lens with no optical power is called an optical window, having flat, parallel faces. The optical power directly relates to how large positive images will be magnified, and how small negative images will be ...

  4. Focal length - Wikipedia

    en.wikipedia.org/wiki/Focal_length

    For a diverging lens (for example a concave lens), the focal length is negative and is the distance to the point from which a collimated beam appears to be diverging after passing through the lens. When a lens is used to form an image of some object, the distance from the object to the lens u, the distance from the lens to the image v, and the ...

  5. Real image - Wikipedia

    en.wikipedia.org/wiki/Real_image

    A real image occurs at points where rays actually converge, whereas a virtual image occurs at points that rays appear to be diverging from. Real images can be produced by concave mirrors and converging lenses, only if the object is placed further away from the mirror/lens than the focal point, and this real image is inverted. As the object ...

  6. Thin lens - Wikipedia

    en.wikipedia.org/wiki/Thin_lens

    The distance between an image and a lens. Real image Virtual image f: The focal length of a lens. Converging lens Diverging lens y o: The height of an object from the optical axis. Erect object Inverted object y i: The height of an image from the optical axis Erect image Inverted image M T: The transverse magnification in imaging (= the ratio ...

  7. Numerical aperture - Wikipedia

    en.wikipedia.org/wiki/Numerical_aperture

    This case is commonly encountered in photography, where objects being photographed are often far from the camera. When the object is not distant from the lens, however, the image is no longer formed in the lens's focal plane, and the f-number no longer accurately describes the light-gathering ability of the lens or the image-side numerical ...

  8. Cardinal point (optics) - Wikipedia

    en.wikipedia.org/wiki/Cardinal_point_(optics)

    The optical center of a spherical lens is a point such that If a ray passes through it, then its lens-exiting angle with respect to the optical axis is not deviated from the lens-entering angle. In the right figure, [8] the points A and B are where parallel lines of radii of curvature R 1 and R 2 meet the lens surfaces.

  9. Optical aberration - Wikipedia

    en.wikipedia.org/wiki/Optical_aberration

    With an ideal lens, light from any given point on an object would pass through the lens and come together at a single point in the image plane (or, more generally, the image surface). Real lenses, even when they are perfectly made, do not however focus light exactly to a single point.