enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equivalent radius - Wikipedia

    en.wikipedia.org/wiki/Equivalent_radius

    In applied sciences, the equivalent radius (or mean radius) is the radius of a circle or sphere with the same perimeter, area, or volume of a non-circular or non-spherical object. The equivalent diameter (or mean diameter ) ( D {\displaystyle D} ) is twice the equivalent radius.

  3. Wigner–Seitz radius - Wikipedia

    en.wikipedia.org/wiki/Wigner–Seitz_radius

    The Wigner–Seitz radius, named after Eugene Wigner and Frederick Seitz, is the radius of a sphere whose volume is equal to the mean volume per atom in a solid (for first group metals). [1] In the more general case of metals having more valence electrons, r s {\displaystyle r_{\rm {s}}} is the radius of a sphere whose volume is equal to the ...

  4. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    Download QR code; Print/export ... d is the diameter, and r is the radius. More generally, ... where V is the volume of a sphere and r is the radius.

  5. Mean radius (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Mean_radius_(astronomy)

    Alternatively, the closely related mean diameter (), which is twice the mean radius, is also used. For a non-spherical object, the mean radius (denoted R {\displaystyle R} or r {\displaystyle r} ) is defined as the radius of the sphere that would enclose the same volume as the object. [ 1 ]

  6. Sauter mean diameter - Wikipedia

    en.wikipedia.org/wiki/Sauter_mean_diameter

    In fluid dynamics, Sauter mean diameter (SMD) is an average measure of particle size. It was originally developed by German scientist Josef Sauter in the late 1920s. [1] [2] It is defined as the diameter of a sphere that has the same volume/surface area ratio as a particle of interest. Several methods have been devised to obtain a good estimate ...

  7. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    Using radians, the formula for the arc length s of a circular arc of radius r and subtending a central angle of measure 𝜃 is =, and the formula for the area A of a circular sector of radius r and with central angle of measure 𝜃 is A = 1 2 θ r 2 . {\displaystyle A={\frac {1}{2}}\theta r^{2}.}

  8. Volume of an n-ball - Wikipedia

    en.wikipedia.org/wiki/Volume_of_an_n-ball

    The volume can be computed without use of the Gamma function. As is proved below using a vector-calculus double integral in polar coordinates, the volume V of an n-ball of radius R can be expressed recursively in terms of the volume of an (n − 2)-ball, via the interleaved recurrence relation:

  9. Steinmetz solid - Wikipedia

    en.wikipedia.org/wiki/Steinmetz_solid

    The generation of a bicylinder Calculating the volume of a bicylinder. A bicylinder generated by two cylinders with radius r has the volume =, and the surface area [1] [6] =.. The upper half of a bicylinder is the square case of a domical vault, a dome-shaped solid based on any convex polygon whose cross-sections are similar copies of the polygon, and analogous formulas calculating the volume ...